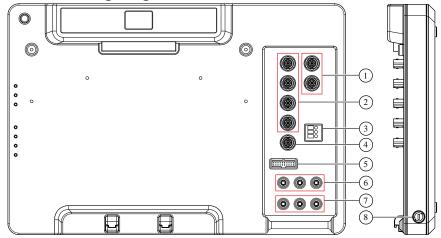
NI ELVIS III Using Your Instruments

Contents

Using the Instruments	. 4
Simulating the Instruments	. 9
Channel Connections and Supported Features for Simulated Instruments	. 9
Choosing the Instruments	
Oscilloscope	12
Connecting Signals to the Oscilloscope	13
Measuring a Waveform	14
Configuration Options	15
TDMS File Format	29
Programming the Oscilloscope	30
Streaming Data from Multisim Live	30
Oscilloscope Concepts	31
Oscilloscope Specifications	36
Function and Arbitrary Waveform Generator	37
Connecting Signals to the Function and Waveform Arbitrary Generator	37
Generating a Waveform	38
Configuration Options	39
Programming the Function and Arbitrary Waveform Generator	45
Frequency Sweep	46
Function and Arbitrary Waveform Generator Specifications	48
Data Generator	49
Generating a Waveform	49
Configuration Options	50
Digital Multimeter	53
Connecting Signals to the Digital Multimeter (DMM)	54
Taking a Measurement	55
Configuration Options	56
Programming the Digital Multimeter	59
Digital Multimeter (DMM) Specifications	59
Variable Power Supply	61
Connecting Signals to the Variable Power Supplies	62
Supplying a Voltage	62
Configuration Options	64

Programming the Variable Power Supply	. 67
Voltage Sweep	. 68
Variable Power Supplies Specifications.	. 69
Bode Analyzer	. 70
Connecting Signals to the Bode Analyzer	. 70
Analyzing Frequency Response	. 71
Configuration Options	. 72
Programming the Bode Analyzer	. 77
Bode Analyzer Specifications	. 77
Current-Voltage Analyzer	. 79
Connecting Signals to the IV Analyzer	. 79
Analyzing a Diode	. 80
Analyzing a BJT	. 81
Configuration Options	. 82
Programming the IV Analyzer	. 87
Current-Voltage (IV) Analyzer Specifications	. 88
Logic Analyzer and Pattern Generator	. 89
Connecting Signals to the Logic Analyzer and Pattern Generator	. 89
Generating and Measuring a Digital Signal	. 90
Configuration Options	. 91
TDMS File Format	101
Programming the Logic Analyzer and Pattern Generator	102
Logic Analyzer and Pattern Generator Specifications	103
Digital I/O	104
Monitoring the Prototyping Board Switch with Digital I/O	104
Controlling the LED with Digital I/O	105
Configuration Options	
Data Logger	111
Logging a Data Set	
Configuration Options	
TDMS File Format	
Collaborating with Your Team Members	120

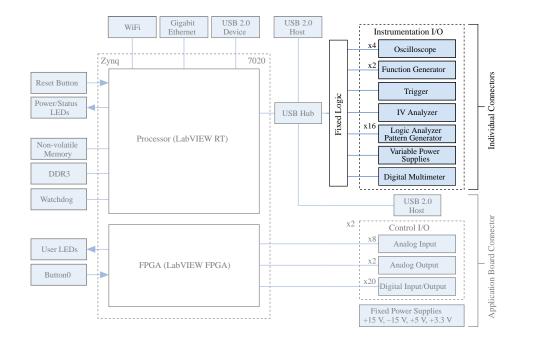
Using the Instruments


The NI ELVIS III combines a suite of instruments that offers the same functionality as a set of stand-alone benchtop instruments commonly used in electronics laboratories.

You can use the Soft Front Panels (SFPs) to interact with the instruments on the NI ELVIS III without programming. You can also program the instruments after you install the NI ELVIS III Software Bundle. The NI ELVIS III Software Bundle includes the LabVIEW ELVIS III Toolkit, which provides the Instruments and Control I/O palettes that contain VIs for controlling the instrumentation I/O and control I/O channels respectively on the NI ELVIS III.

The instruments leverage two types of I/O on the NI ELVIS III: Instrumentation I/O and Control I/O.

Instrumentation I/O

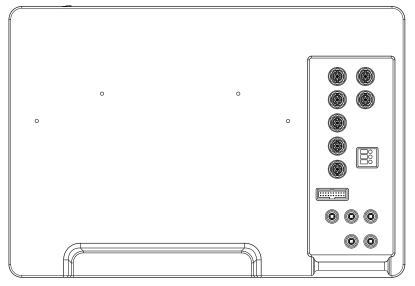

The following diagram shows the NI ELVIS III with the instrumentation I/O labeled.

- 1. Function Generator
- 2. Oscilloscope
- 3. IV Analyzer
- 4. Trigger
- 5. Logic Analyzer/Pattern Generator

- 6. Variable Power Supplies
- 7. Digital Multimeter
- 8. Digital Multimeter Fuse

The following diagram shows the NI ELVIS III hardware architecture with the instrumentation I/O highlighted.

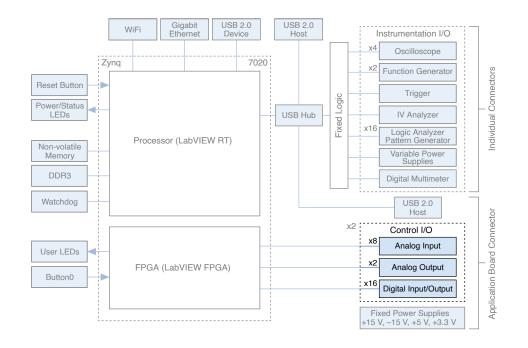
You may encounter resource conflicts if you run certain instrument circuitry simultaneously. The following table shows all the instrumentation resource conflicts. To use the information in the following table, find the instrument you want to use in the left column. The rows from that left column lists all the functions that are resource conflicts. If the intersecting box contains an X, you cannot use those functions simultaneously; otherwise you may encounter resource conflicts. If the intersecting box is empty, you can use those functions simultaneously.


Table 1. Instrumentation	Resource Conflicts
--------------------------	---------------------------

	Function	0	0	Variable Powor	Logic Analyzer	IV Analyzor	Bode Analyzor
ope	r		er (Other)		,	Anatyzei	Anatyzei

			nce/ Inductan ce)			Generato r		
Oscillosc ope	-		Х				Х	Х
Function Generato r		-	Х				Х	Х
Digital Multimet er (Capacita nce/ Inductan ce)	X	X	-				X	X
Digital Multimet er (Other)				-				
Variable Power Supplies					-			
Logic Analyzer and Pattern Generato r						-		
IV Analyzer	Х	Х	Х				-	Х
Bode Analyzer	Х	Х	Х				Х	-

Control I/O


The following diagram shows the NI ELVIS III with most control I/O terminals labeled. The labeled terminals are used by the instruments.

- 1. Analog input terminals used by the Data Logger
- 2. Analog output terminals used by the Data Generator
- 3. Digital input/output terminals used by the Digital I/O

Note You can use the <u>NI ELVIS III Prototyping Board</u> to access the control I/O terminals.

The following diagram shows the NI ELVIS III hardware architecture with the control I/O highlighted.

Note The Digital I/O uses only 16 out of the 20 digital input/output channels.

Refer to <u>Programming the Control I/O</u> to learn how to program the control I/O with LabVIEW. When running the instruments that use the control I/O channels, you may encounter resource conflicts in one of the following three conditions:

- LabVIEW is running a custom FPGA bitfile.
- LabVIEW and Measurements Live are running different versions of the Control I/O VIs.
- LabVIEW and Measurements Live are using the same control I/O channel(s) simultaneously.

You can close the related VIs in LabVIEW to resolve the resource conflict.

Related information:

- Installing the NI ELVIS III Software Bundle
- LabVIEW ELVIS III Toolkit Help
- Launching the Soft Front Panels

Simulating the Instruments

Learn to use the major instruments on the NI ELVIS III device before connecting to a real device.

The following two typical pairs of instruments are pre-connected and configured for you to simulate, covering the common use cases in labs, such as generating, acquiring, and analyzing waveforms.

- Oscilloscope & Function and Arbitrary Waveform Generator
- Variable Power Supply & Digital Multimeter

Complete the following steps to simulate the instruments.

- 1. Go directly to measurementslive.ni.com.
- 2. Click **DEVICE SIMULATION** to connect Measurements Live to a simulated NI ELVIS III device.
- On the top right corner, choose a pair of instruments to simulate by clicking a checkbox.
 You launch the corresponding Soft Front Panels (SFPs) and the SFPs run

You launch the corresponding Soft Front Panels (SFPs) and the SFPs run immediately.

- 4. Observe the measurements on the SFPs.
- 5. Adjust the configuration options as needed.

Some configuration options are dimmed because they do not work on a simulated device. Refer to <u>Channel Connections and Supported Features for Simulated</u> <u>Instruments</u> to learn what tasks you can perform by simulating the instruments. To experience full functionality of the NI ELVIS III, connect to a real device! **Channel Connections and Supported Features for Simulated Instruments**

Each pair of instruments is pre-connected and configured for you to simulate.

Learn the channel connections and supported features for each pair of instruments in the following table.

Instrument pair	Channel connection	Supported feature
Oscilloscope & Function Generator and Arbitrary Waveform Generator (FGen)	 The Oscilloscope channel (CH) 1 is connected to the FGen CH1. The Oscilloscope CH 2 is connected to the FGen CH 2. 	Oscilloscope: Acquire and display the waveforms with most functions available. Perform FFT or math operations on the waveform. Compare waveforms using the reference channels. FGen: Generate standard waveforms.
Variable Power Supply (VPS) & Digital Multimeter (DMM)	 The VPS "+" terminal is connected to the DMM VΩ terminal. The VPS ground terminal is connected to the DMM COM terminal. 	 VPS: Provide positive DC voltages. DMM: Measure positive DC voltages.

Choosing the Instruments

You can choose from various instruments based on the kind of measurement you want to take.

Oscilloscope vs Data Logger

Refer to the following table to determine which instrument you want to use to measure analog signals.

	Oscilloscope	Data Logger
Use cases	 Acquire, display, analyze, and record waveforms. Perform fast Fourier transform or mathematical operations on the signal. Compare the acquired signal with the signal on a reference channel. 	Acquire, display, record, and store analog signals to a file.
Hardware terminals	Instrumentation I/O	Control I/O
Number of channels	4	24 (single-ended mode and differential mode)
Input range	±50 V	±10 V, ±5 V, ±2 V, ±1 V
Accuracy	2% of input + 1% of full scale	 Typical condition (25 °C ± 5 °C): 0.064% of reading + 0.004% of range Maximum (10 °C to 35 °C): 0.397% of reading + 0.054% of range
Trigger types	Two types of hardware triggers:Analog edgeDigital edge	 Various types of software triggers: Start trigger: Immediate, Delay, Level, and Range. Stop trigger: No trigger, Duration, Level, Range, and Number of samples.
Maximum sample rate	 400 MS/s with repetitive sampling enabled 	 Single channel: 100 kS/s Multichannel: 100 kS/s (aggregate)

	Oscilloscope	Data Logger
	 100 MS/s without repetitive sampling enabled 	
Continuously acquire data?	No	Yes
Automatically save data to the local computer?	No	Yes
Export data?	Yes	Yes

Function and Arbitrary Waveform Generator vs Data Generator

Refer to the following table to determine which instrument you want to use to generate analog signals.

	Function and Arbitrary Waveform Generator	Data Generator
Use cases	Generate standard or arbitrary waveforms.	Generate standard waveforms.
Hardware terminals	Instrumentation I/O	Control I/O
Number of channels	2	4
Maximum frequency	15 MHz	50 kHz
Channel mode	Static, Sweep, and Custom	Static
Can generate a phase shift?	Yes	Yes

Related concepts:

- Oscilloscope
- <u>Data Logger</u>
- Function and Arbitrary Waveform Generator
- <u>Data Generator</u>

Oscilloscope

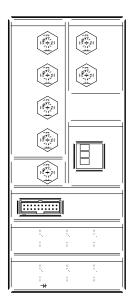
The Oscilloscope is a standard digital storage oscilloscope. You can use the Oscilloscope to complete the following tasks:

• Acquire, display, and analyze the input signal.

- Perform fast Fourier transform or mathematical operations on the signal.
- Compare the acquired signal with the signal on a reference channel.

Find an introductory video about using the instrument on <u>ni.com</u>. Find out more about the Oscilloscope in the following topics:

- Connecting Signals to the Oscilloscope
- Measuring a Waveform
- <u>Configuration Options (Oscilloscope)</u>
- <u>TDMS File Format (Oscilloscope)</u>
- <u>Programming the Oscilloscope</u>
- Oscilloscope Concepts
- Oscilloscope Specifications

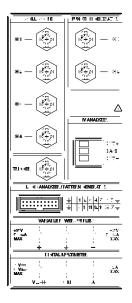

Related reference:

<u>Choosing the Instruments</u>

Connecting Signals to the Oscilloscope

The NI ELVIS III instrumentation panel provides four channels for oscilloscope input signals.

The Oscilloscope uses dedicated analog-to-digital converters to acquire up to 100 MS/s per channel with 14-bit resolution.



Measuring a Waveform

This example illustrates how to use the Function and Arbitrary Waveform Generator (FGen/Arb) to generate a waveform and use the Oscilloscope to measure the waveform.

The procedure for measuring other types of waveforms is similar. Refer to the <u>Configuration Options (Oscilloscope)</u> section to learn about other functionalities of the Oscilloscope.

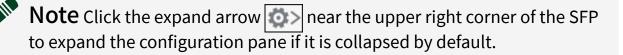
1. Connect a BNC - BNC cable between Oscilloscope CH 1 and Function Generator CH1 on the NI ELVIS III, as shown in the following diagram:

Refer to <u>Connecting Signals to the Oscilloscope</u> for more details about connecting to the Oscilloscope.

- 2. Launch the FGen/Arb Soft Front Panel (SFP).
- 3. Configure the FGen/Arb to generate a sine wave on **Channel 1**.
- 4. Click **Run** to start generating a sine wave.
- 5. Launch the Oscilloscope Soft Front Panel (SFP).
- 6. Configure the Oscilloscope to measure the input signal on **Channel 1**.
- 7. Click **Run** to start measuring the input signal. A sine wave appears in the display window.

- 8. Adjust the display settings as needed. You can also select **Auto setup** if you want the Oscilloscope to choose some settings automatically.
- 9. If necessary, adjust the trigger settings to stabilize the waveform in the display window.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.


Related information:

Launching the Soft Front Panels

Configuration Options (Oscilloscope)

Use configuration options on the Oscilloscope Soft Front Panel (SFP) to control how to acquire, display, and analyze the waveforms. For example, you can adjust the sample rate.

- <u>Toolbar Controls</u>
- <u>Trigger Settings</u>
- Horizontal & Acquisition Settings
- <u>Channels Settings</u>
- Additional Channels Settings
- <u>Display Window</u>

Toolbar Controls (Oscilloscope)

Use the toolbar controls to perform common tasks for the Oscilloscope. The toolbar is located at the top of the SFP.

The layout of the controls may vary depending on the device from which you launch the SFP. Some controls are hidden by default when you resize the SFP. Click the ellipsis on the toolbar to access hidden controls.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Down triangle 🔽	Click 📝 to open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking 🔀 and launch it again.
Run/Stop	Click Run to start data acquisition. Click Stop to stop data acquisition.
Auto setup/Default	When you select Auto setup , the instrument automatically chooses some settings, including channel and trigger settings, that are best suited to the input signal. When you select Default , the settings fall back to default values.
Single	Takes a single-sweep measurement.
Auto	The Oscilloscope waits momentarily for any occurrence of trigger condition before automatically triggering.
Normal	The Oscilloscope waits indefinitely for any occurrence of trigger condition.
Force	Manually triggers the Oscilloscope.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .
Collapse/Expand 🔯>	Collapses or expands the configuration pane on the right side of the panel.

Trigger Settings (Oscilloscope)

You can configure the trigger by using the trigger settings.

Setting	Description
Туре	Type of trigger to start the acquisition. Refer to the <u>Oscilloscope Concepts</u> section to learn about different trigger types.
	 Analog edge—A trigger occurs when the signal you select in Source crosses the trigger threshold that you define in Level.
	 Digital edge—A trigger occurs on a rising edge of an external digital signal. To use a digital edge trigger, you must first connect a TTL-level signal to the Trigger channel on the NI ELVIS III.
Source	Source of the trigger that starts the data acquisition. • Channel N—The instrument uses Channel N as the trigger signal. You can select Channel N only when Type is
	 TRIG—The instrument uses the Trigger channel on the NI ELVIS III as the trigger signal. You can select TRIG only when Type is Digital edge.
Slope	 Place at which a trigger occurs. Rising—The trigger occurs at a rising edge for digital signals, or a rising slope for analog signals.
	 Falling—The trigger occurs at a falling slope for analog signals. This option is currently unavailable for digital signals.
	 Either—The trigger occurs in either case. This option is currently unavailable for digital signals.

Setting	Description		
Level	Voltage at which a trigger occurs. This setting i enabled only when Type is Analog edge . Level must be between -50 V and 50 V when th probe attenuation of the trigger signal is 1x ar between -500 V and 500 V when the probe attenuation of the trigger signal is 10x .		
	Note The Oscilloscope uses hysteresis to reduce false triggering due to noise or jitter in the signal, by adding a window above or below Level. The hysteresis is 25% of Volts/div. You can adjust the value of hysteresis by configuring Volts/div in <u>Channel Settings</u> . Refer to <u>Hysteresis</u> to learn more about how hysteresis works.		
Set 50%	Sets the trigger level as 50% of the peak-to-peak voltage of the measured signal. This setting is available only when Type is Analog edge .		
Acquisition delay	Decides whether the instrument waits for a certain period of time after a trigger is detected before it starts sampling. Enable Acquisition delay when there is a delay between when the trigger occurs and when the desired data is generated, or when you need a high sampling rate for the desired acquisition window.		
Position	The time between the trigger position and the middle of the display pane. The value of Position changes when you move the trigger horizontally.		

Horizontal & Acquisition Settings (Oscilloscope)

You can configure the display and the data acquisition by using the **Horizontal & Acquisition** settings.

Setting	Description
Time/div	The horizontal scale of the display.
Shrink 🕂 🕇	Contracts the trace by increasing Time/div .
Expand 🛧 🔨	Expands the trace by decreasing Time/div .
Acquisition	Filter you apply to the analog-to-digital (AD) conversion results.
	 Decimate—The Oscilloscope records only the N AD conversion result, where N is predefined by the Oscilloscope.
	 Average—The Oscilloscope calculates each sample as the average of the AD conversion results.
	 Min/Max—For each two samples, the Oscilloscope calculates one as the minimum value of the conversion results and the other as the maximum value of the conversion results. In other words, the maximum value and the minimum value appear by turns.
Repetitive sampling	Specifies whether to enable repetitive sampling on the trigger signal.
	 Off—Disables repetitive sampling on the trigger signal.
	 Auto—The Oscilloscope automatically detects if all repetitive sampling conditions are met and decides whether to enable repetitive sampling on the trigger signal.
	To enable repetitive sampling, you must configure the Oscilloscope as follows:
	 The trigger type must be Analog edge, and the trigger signal must be enabled.

Setting	Description
	 The trigger mode must be Single or Normal.
	 The trigger level must be within the range of the input signal. When repetitive sampling is enabled, you cannot manually trigger the instrument, and the Force button is dimmed.
	 Sample rate must be 100 MS/s. You can increase Sample rate by reducing Time/div or the absolute value of the Position. However, that is not applicable when Acquisition delay is enabled and the value of Position is negative.
	Note The trigger signal must be periodic and with low noise. Otherwise, the graph on the display may be distorted. You can configure Type, Mode, Acquisition delay, and Position in Trigger Settings. Refer to <u>Repetitive Sampling</u> for more information.

Channels Settings (Oscilloscope)

You can configure channels by using the channels settings.

Setting	Description	Operational Limits
Status	Shows/Hides the channel's trace on graph.	-
Volts/div	Vertical scale of the display.	-
	Note The Oscilloscope uses hysteresis to reduce false triggering due to noise or jitter in	

Setting	Description	Operational Limits
	the signal. The hysteresis is 25% of Volts/div . By increasing Volts/ div , you increase the value of hysteresis, which in turn stabilizes the signal in the display window. However, when hysteresis is too high, the Oscilloscope may never be triggered. Adjust Volts/div until you get a stable signal on the display.	
Shrink 🔨 🕁	Contracts the trace by increasing Volts/div .	-
Expand ↑ ✓	Expands the trace by decreasing Volts/div .	-
Vertical position	Vertical positioning of the waveform on the graph. Use Vertical position or Vertical offset to move the waveform up and down the graph. The Oscilloscope does not apply Vertical position to the input signal.	Range: -100 V to 100 V
Probe attenuation	Amount of attenuation provided by the probe connected to the channel. Select 1X if the probe does not attenuate the input signal. Select 10X if the probe attenuates the input signal by a	

Setting	Description	Operational Limits
	factor of ten. Probe attenuation must match the setting of the probe connected to the channel.	
Coupling	Specifies whether to remove the DC component from the signal. Select DC if you want to measure the entire signal. Select AC if you want to remove the DC component from the signal.	-
Vertical offset	Voltage on which the vertical range is centered. You can use Vertical position or Vertical offset to move the waveform up and down the graph. The Oscilloscope applies Vertical offset to the input signal.	Range: -25 V to 25 V when Probe attenuation is 1x and -250 V to 250 V when Probe attenuation is 10x
Vertical range	Indicates the current input range. You can change Vertical range by adjusting Vertical offset .	-
	Caution Protect yourself with safety equipment when measuring high voltages. You must use a 10x probe to protect the hardware.	

Additional Channels Settings (Oscilloscope)

Use configuration options in the **Additional Channels** section to perform a 16Kpoint fast Fourier transform (FFT) or mathematical operations on the signal, or to configure a reference channel.

- FFT Channel
- <u>Math Channel</u>
- <u>Reference Channel</u>

FFT Channel

You can configure the fast Fourier transform (FFT) channel to perform a 16K-point fast Fourier transform on the signal.

Use the following settings to configure the FFT channel.

Setting	Description
Status	Enables or disables fast Fourier transform on the source channel.
Source channel	Source channel on which you want to perform fast Fourier transform.
Window	Time-domain window to apply to the signal.
Start frequency	Frequency at the extreme left of the horizontal axis.
Stop frequency	Frequency at the extreme right of the horizontal axis.

Display	Description
Center frequency	Frequency that is at the center of the horizontal axis.
Span	Range between the start frequency and the stop frequency.
Reference level	Maximum expected power of the input signal. The Oscilloscope automatically sets Reference level based on the value of Volts/Div .
Resolution bandwidth	The horizontal scale.
Record length	Range of the X axis on the time domain graph.

Math Channel

You can configure the mathematical channel to perform mathematical operations on the signal.

Use the following settings to configure the math channel.

Setting	Description
Status	Enables or disables math operation on the source channels.
Volts/div	Vertical scale of the display.
Shrink 🗸 🔶	Contracts the trace by increasing Volts/div .
Expand 🛧 🔨	Expands the trace by decreasing Volts/div .
Vertical position	Vertical positioning of the waveform on the graph. Use Vertical position to move the waveform up and down the graph. The Oscilloscope does not apply Vertical position to the input signal. The range of Vertical position is -100 V to 100 V.
Function	Math operation you want to perform on the channels.
Source A	First source channel.
Source B	Second source channel.

Digital Filtering

The Oscilloscope may acquire noisy signals. Use digital filtering to remove unwanted parts of the captured waveform such as noise within the bandwidth of the instrument. You can set **Function** to **Filter** to enable digital filtering. Use the following settings to configure the math channel when digital filtering is enabled:

Setting	Description
Source	Source channel on which you want to perform digital filtering.
Typology	 The design type of the filter. Butterworth filter—Rolls off slowly around the cutoff frequency. Chebyshev filter—Rolls off moderately around the cutoff frequency.

Setting	Description
Туре	The passband of the filter. Only low pass filter is available.
Order	The maximum delay, in samples, used in creating each output sample. The range of Order is between 1 and 16.
Cutoff frequency	A frequency characterizing a boundary between a passband and a stopband. The value of Cutoff frequency must be greater than 0.

Reference Channel

Use the following settings to configure a reference channel.

Setting	Description
Status	Enables or disables sourcing data from another channel.
Volts/div	Vertical scale of the display.
Shrink 🗸 🗸	Contracts the trace by increasing Volts/div .
Expand ↑ ✓	Expands the trace by decreasing Volts/div .
Vertical position	Vertical positioning of the waveform on the graph. Use Vertical position to move the waveform up and down the graph. The Oscilloscope does not apply Vertical position to the input signal. The range of Vertical position is -100 V to 100 V.
Mode	 Data sources for the reference channels. When you select Load from file, the Oscilloscope loads data from a data file. You specify the path to the file in Source file. When you select Stream from Multisim Live, the Oscilloscope loads simulated data streamed from Multisim Live.

Load from file

When you select **Load from file**, the Oscilloscope loads data from a data file. The following settings are available only when you select **Load from file** for **Mode**.

Setting	Description
Source file	Path to the data file. You can load CSV files from Multisim and Multisim Live and TDMS files from LabVIEW. The TDMS files must contain only analog waveform data. You can also load CSV or TDMS files exported from the Oscilloscope.
Source file channel	Channel you want to import. If the source data file contains data of multiple channels, you can use Source file channel to select which channel of data you want to import to the Oscilloscope.

Stream from Multisim Live

When you select **Stream from Multisim Live**, the Oscilloscope loads simulated data streamed from Multisim Live. The following settings are available only when you select **Stream from Multisim Live** for **Mode**.

Setting	Description
Source circuit	Name of the circuit you want to use as the source for the reference channel.
Source probe	Name of the probe you want to use as the source for the reference channel.
Sync trigger settings	Select the checkbox to synchronize your simulated signals with real signals. Sync trigger settings means applying <u>the physical</u> <u>channel trigger settings</u> to this reference channel and aligning simulated time points on all reference channels with the physical channel trigger settings. You can apply the trigger settings to only one reference channel at one

Setting	Description
	time. By default, the checkbox does not contain a checkmark.

Display Window (Oscilloscope)

The Oscilloscope displays the acquired signals on the left side of the panel.

Time Pane

The **Time** pane displays the time-domain data.

Use cursors to measure a given point on a trace, or compare the differences between two points. You can select one of the three modes for a cursor:

Cursor Mode	Description
Off	Turns off the cursors.
Track	Cursor positions are restricted to the acquired data points on a trace.
Manual	Cursors positions are not restricted to the acquired data points on a trace.

When **Cursors** is set to **Manual** or **Track**, a table appears above the display with the following data:

Column	Description
C1	Displays the time and amplitude readings for Cursor 1.
C2	Displays the time and amplitude readings for Cursor 2.
∆ Value	Displays the absolute time and amplitude differences between Cursor 1 and Cursor 2.
1/ ∆ Value	Displays the reciprocal of the absolute time difference between Cursor 1 and Cursor 2.

The **Time** pane displays the Oscilloscope's acquisition status and sample rate(s) in the upper right corner of the graph. The Oscilloscope has the following acquisition statuses:

• Waiting for trigger—The instrument is waiting for trigger.

- **Triggered**—The instrument is triggered.
- Auto Triggered—The instrument is triggered by an automatic trigger.
- Force Triggered—The instrument is triggered by a manual trigger.
- **Stopped**—The instrument is stopped.

When repetitive sampling is enabled, the pane displays both the repetitive sampling rate of the trigger signal and the normal sampling rate of the remaining signals.

Measurements Pane

The **Measurements** pane displays the measurements of the channels, including the peak-to-peak voltage, root mean square (RMS), frequency, and period.

FFT Pane

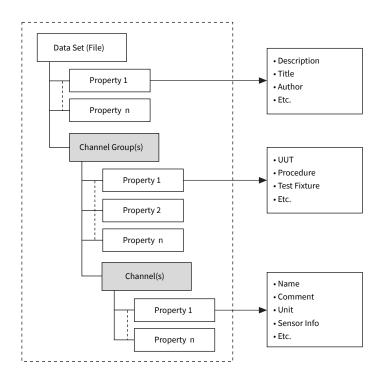
The **FFT** pane displays the frequency-domain data. The **FFT** pane appears only when you enable the FFT channel.

Use cursors to measure a given point on a trace, or compare the differences between two points. You can select one of the three modes for a cursor:

Cursor Mode	Description
Off	Turns off the cursors.
Track	Cursor positions are restricted to the acquired data points on a trace.
Manual	Cursors positions are not restricted to the acquired data points on a trace.

When **Cursors** is set to **Manual** or **Track**, a table appears above the display with the following data:

Column	Description
C1	Displays the frequency and gain readings for Cursor 1.
C2	Displays the frequency and gain readings for Cursor 2.


Column	Description
Δ Value	Displays the absolute frequency and gain differences between Cursor 1 and Cursor 2.

Click the configuration button on the top right of the pane to access the **Gain mapping** control. You can choose **Logarithmic** or **Linear** for the **Gain** axis.

TDMS File Format (Oscilloscope)

You can export the data acquired by the Oscilloscope to TDMS files.

The TDMS file format is supported by the TDM data model. The TDM data model arranges the data in three hierarchical levels: file, channel groups, and channels. The following figure illustrates the TDM data model:

The TDMS files that you export from the SFPs contain some custom properties, for example, **product-name**. For all TDMS files that you generate using the NI ELVIS III instruments, the value of **product-name** is always NI ELVIS III. These TDMS files also have designated names for the channel group and channels. The TDMS files you export from the Oscilloscope have the following data structure:

- channel_group: Scope

- channel: CH1
- channel: CH2
- channel: MATH
- ...

The TDMS files list enabled channels only. The order of the channels in the TDMS files matches the top-to-bottom order of the channels on the configuration panel on the right side of the SFP.

Programming the Oscilloscope

You can use the Oscilloscope VIs installed with the LabVIEW ELVIS III Toolkit to program the Oscilloscope instrument on the NI ELVIS III. Find the Oscilloscope VIs on the **Academic I/O** » **Instruments** » **Oscilloscope** subpalette on the Functions palette.

Instruments			8
1 Q Search	🔦 Customize 🔻		
Oscilloscope	Function Generator		VPS
Logic	Bode	下 で IV Analyzer	

Related information:

Oscilloscope VIs

Streaming Data from Multisim Live

Streaming data from Multisim Live to Measurements Live allows you to compare your circuit design with real measurements.

You can simulate the theoretical concepts in Multisim Live, prototype the actual circuit with NI ELVIS III, and stream your circuit design from Multisim Live to Measurements Live. Afterwards, compare the simulation with real-world measurements inside the Measurements Live environment using the NI ELVIS III

Oscilloscope. Refer to the <u>Multisim Live Tutorial</u> for a complete workflow of streaming data from Multisim Live.

<u>Multisim Live</u> is an online SPICE circuit simulator that enables you to create, interactively simulate, learn, and share circuits in a web browser.

Oscilloscope Concepts

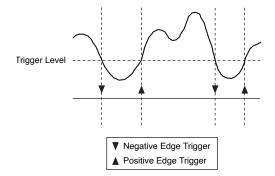
This section introduces some of the important concepts about the Oscilloscope.

- <u>Automatic Setup</u>
- Analog Edge Trigger
- <u>Digital Edge Trigger</u>
- <u>Hysteresis</u>
- <u>Reference Channel</u>
- <u>Repetitive Sampling</u>

Automatic Setup

When you select **Auto setup** for the Oscilloscope, the instrument senses the input signal and automatically chooses many of the instrument settings that best suit the input signal.

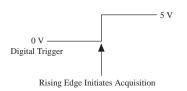
If a signal is detected on an analog channel, the Oscilloscope chooses the smallest available vertical range that is larger than the signal range, and an offset to center the waveform within that range. For example, if the signal is a $1.2 V_{pk-pk}$ sine wave, the Oscilloscope will choose the 2 V vertical range for that channel. An analog channel is considered to have a signal present if the signal is at least 10% of the smallest vertical range available for that channel and vertical offset.


If a signal is detected on at least one analog channel, the lowest-numbered analog channel with a signal will be used as the **Analog edge** trigger, and the sample rate and acquisition time will be optimized for that channel.

If no signal is detected on any analog channel, all settings will be configured to default values, and a warning occurs.

Analog Edge Trigger

An analog edge trigger occurs when an analog signal crosses a trigger threshold that you specify.

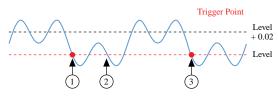

A positive edge trigger occurs on the rising slope of the source signal, and a negative edge trigger occurs on the falling slope of the source signal. Analog edge triggering is possible on all of the Oscilloscope's analog channels.

The following figure shows where analog edge triggers occur:

Digital Edge Trigger

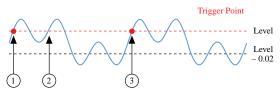
A digital edge trigger occurs when a digital signal transitions from the low level to the high level, also known as a rising-edge trigger. The following figure shows a rising-edge trigger:

Hysteresis

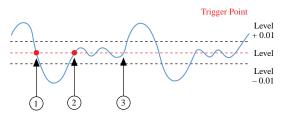

Hysteresis, also known as window size, adds a window above or below the trigger level. Hysteresis reduces false triggering caused by noise or jitter in the signal. The Oscilloscope uses a hysteresis which is 25% of **Volts/div**. For example, when you set **Volts/div** to 0.08 V, the hysteresis is 0.02 V. The way this hysteresis works depends on the value you specify for **Slope** in trigger settings, as described in the following table:

Slope	Description
Rising	The Oscilloscope detects a trigger when the signal starts or drops below Level minus hysteresis and then rises above Level .
Falling	The Oscilloscope detects a trigger when the signal starts or rises above Level plus hysteresis and then drops below Level .

Slope	Description
Either	The Oscilloscope detects a trigger when the signal starts or drops below Level minus hysteresis/2 and then rises above Level , or when the signal starts or rises above Level plus hysteresis/2 and then drops below Level .


How the Oscilloscope Uses Hysteresis to Avoid False Triggering

The following figure explains how the Oscilloscope uses hysteresis to avoid false triggering when **Slope** is **Falling**:

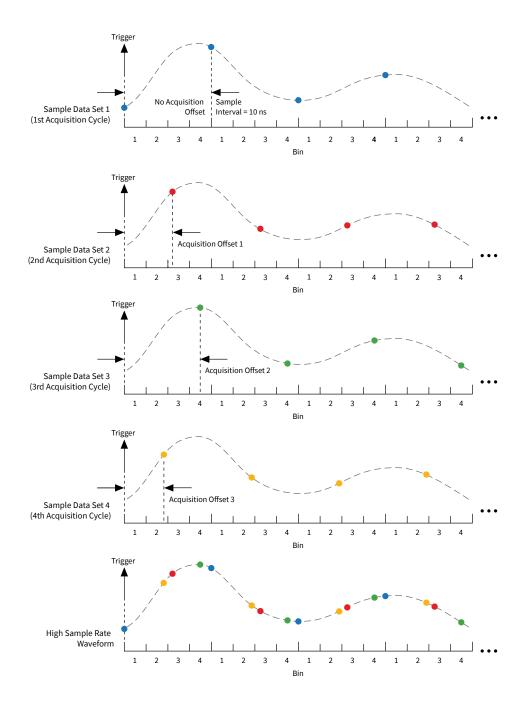

- 1. The Oscilloscope detects a trigger when the signal first rises above the trigger level plus hysteresis and then drops below the trigger level.
- 2. The Oscilloscope does not detect any trigger, because the signal stays below the trigger level plus hysteresis since the Oscilloscope last detected a trigger.
- 3. The Oscilloscope detects another trigger.

The following figure explains how the Oscilloscope uses hysteresis to avoid false triggering when **Slope** is **Rising**:

- 1. The Oscilloscope detects a trigger when the signal first drops below the trigger level minus hysteresis and then rises above the trigger level.
- 2. The Oscilloscope does not detect any trigger, because the signal stays above the trigger level minus hysteresis since the Oscilloscope last detected a trigger.
- 3. The Oscilloscope detects another trigger .

The following figure explains how the Oscilloscope uses hysteresis to avoid false triggering when **Slope** is **Either**:

- 1. The Oscilloscope detects a trigger when the signal first rises above the trigger level plus hysteresis/2 and then drops below the trigger level.
- 2. The Oscilloscope detects another trigger when the signal first drops below the trigger level minus hysteresis/2 and then rises above the trigger level.
- 3. The Oscilloscope does not detect any trigger, because the signal stays above the trigger level minus hysteresis/2 since the Oscilloscope last detected a trigger.


Reference Channel

A reference channel is a snapshot of the state of an analog channel. A reference channel acts just like other analog channels but its data does not change after the snapshot is taken. Measurements and cursors can be used on reference channels. You can use data files exported from the Oscilloscope as the source for a reference channel.

Repetitive Sampling

Repetitive sampling increases the sample rate of the Oscilloscope by shifting the acquisition time for different acquisition cycles and interleaving multiple acquisition results.

The following figure explains how the Oscilloscope achieves a repetitive sampling rate that is four times the configured sample rate.

Multiple Acquisition Cycles

When you set the sample rate to 100 MS/s, the Oscilloscope samples the signal every 10 ns, known as the sample interval.

To achieve a repetitive sampling rate of 400 MS/s, the Oscilloscope divides the sample interval into four bins, and ensures that each bin is filled with a sample data point. To do so, the Oscilloscope starts sampling at a different time during each acquisition by inserting a time lapse, known as acquisition offset, between when the trigger occurs and when the Oscilloscope starts sampling. The acquisition offset ranges from 0 to 10 ns.

To ensure that each bin is filled with a sample date point, at least four acquisition cycles are needed because of the randomness of the acquisition offset. The previous figure shows an ideal situation with just four acquisition cycles.

High Sample Rate Waveform

When all four bins are filled with sample data points, the Oscilloscope interleaves the sample data sets to form a single, high sample rate waveform.

The high sample rate waveform in the previous figure illustrates the concept of ideal repetitive waveform acquisition. In the actual case, the Oscilloscope samples for at least 16 acquisition cycles to generate a high sample rate waveform. The generated data points, which are uniformly distributed in each bin, are averages of four sample data points in the corresponding bin.

Limitations

Because the Oscilloscope creates the waveform from multiple samples acquired at different times with respect to the trigger, the repetitive sampling method has certain limitations. The input signal must be periodic and low-noise.

Oscilloscope Specifications

Specifications are **Typical** unless otherwise noted.

Number of channels	4
Maximum sampling rate (per channel)	
with repetitive sampling enabled	400 MS/s
without repetitive sampling enabled	100 MS/s
Resolution	14 bits

Bandwidth	50 MHz at -3 dB
Input impedance	1 MΩ 15 pF
Input coupling	AC, DC
AC coupling cut-off frequency	12 Hz at -3 dB
Overvoltage protection	±50 V
Accuracy	2% of input + 1% of full scale

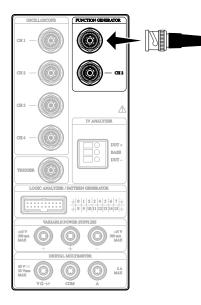
Table 2. Input Range

Range	Full Scale	Offset	Offset Accuracy
High gain (≤200 mV/div)	2 V peak-to-peak	±1 V	±25 mV
Low gain (>200 mV/div)	50 V peak-to-peak	±25 V	±625 mV

Note Input voltages should not exceed 50 V DC or 30 V RMS.

Function and Arbitrary Waveform Generator

The Function and Arbitrary Waveform Generator (FGen/Arb) generates standard or arbitrary waveforms by using Function Generator CH 1 and CH 2 on the NI ELVIS III. Find an introductory video about using the instrument on <u>ni.com</u>. Find out more about the Function and Arbitrary Waveform Generator in the following topics:

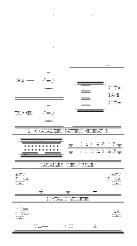

- <u>Connecting Signals to the Function and Waveform Arbitrary Generator</u>
- <u>Generating a Waveform</u>
- <u>Configuration Options (FGen/Arb)</u>
- <u>Programming the Function and Arbitrary Waveform Generator</u>
- Frequency Sweep
- <u>Function and Arbitrary Waveform Generator Specifications</u>

Related reference:

• <u>Choosing the Instruments</u>

Connecting Signals to the Function and Waveform Arbitrary Generator

The NI ELVIS III instrumentation panel provides two channels for function and waveform generator output signals.



Generating a Waveform

This example illustrates how to generate a swept sine wave by using the Function and Arbitrary Waveform Generator (FGen/Arb).

The procedure for generating other types of waveforms is similar. Refer to the <u>Configuration Options (FGen/Arb)</u> section to learn about other generation modes.

1. Connect a BNC cable between Function Generator CH 1 and the circuit under test, as shown in the following diagram:

Refer to <u>Connecting Signals to the Function and Waveform Arbitrary</u> <u>Generator</u> for more details about connecting to the FGen/Arb.

- 2. Launch the FGen/Arb Soft Front Panel (SFP).
- 3. Select **Sweep** as the channel mode and **Sine** as the waveform type for Channel 1.
- 4. Select the desired waveform settings.
- 5. Click **Run** to start signal generation. While the instrument is running, you can modify the waveform in real time by adjusting the settings.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

Launching the Soft Front Panels

Configuration Options (FGen/Arb)

Use configuration options on the Function and Arbitrary Waveform Generator (FGen/Arb) Soft Front Panel (SFP) to control the type and parameters of the waveform you want to generate. For example, you can configure symmetry to generate symmetric waveforms.

Toolbar Controls

Use the toolbar controls to perform common tasks for the FGen. The toolbar is located at the top of the SFP.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🚽	Click do open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .

Static Mode

The following settings are available when you select the **Static** mode:

Setting	Description	
Waveform	Type of waveform you want to generate.	
Frequency	Frequency of the waveform. This option is available only if you select Sine , Square , or Triangle as the waveform type.	
Amplitude	Peak-to-peak voltage of the waveform. This option is available only if you select Sine, Square , or Triangle as the waveform type.	
DC offset	Mean amplitude displacement from zero. This option is available only if you select Sine, Square , or Triangle as the waveform type.	
Phase	Initial phase, in degrees, of the waveform. This option is available only if you select Sine, Square , or Triangle as the waveform type.	
	Note If you want to generate phase- shifted waveforms, you can open multiple channels and set different phases for the waveforms. If you want a stable phase shift, ensure that the waveforms are synchronized. To achieve that, the	

Setting	Description
	waveforms must have the same frequency and you are not recommended to change their frequencies when the SFP is running.
Duty cycle	Percentage of the pulse width in the total period of the waveform. This option is available only if you select Square as the waveform type.
Symmetry	Projection of the line segment between the start and the peak divided by the width of a waveform cycle. The default is 50%. This option is available only if you select Triangle as the waveform type.
Voltage	Amplitude displacement from zero. This option is available only if you select DC as the waveform type.

Sweep Mode

The following settings are available when you select the **Sweep** mode:

Setting	Description	Operational Limits
Waveform	Type of waveform you want to generate.	
Start frequency	Frequency at which the waveform frequency sweep starts. Start frequency can be	Range: 200 mHz to 15 MHz Resolution: 0.001 mHz

Setting	Description	Operational Limits
	either greater than or less than Stop frequency .	
Stop frequency	Frequency at which the waveform frequency sweep stops. Start frequency can be either greater than or less than Stop frequency .	Range: 200 mHz to 15 MHz Resolution: 0.001 mHz
Step	Frequency interval during a frequency sweep.	Range: 200 mHz to 15 MHz Resolution: 0.001 mHz
	Note The number of steps in one sweep equals the rounded up value of Start frequency - Stop frequency / Step. The instrument stores the steps in the buffer, which can hold no more than 32,768 steps. When the number of steps exceeds 32,768, a buffer overflow error occurs.	
Step interval	Time interval between each waveform generation during a frequency sweep.	Range: 1 ms to 86400 s
Generation mode	Mode of the waveform generation. Select Run once if you only want to generate the waveform once. Select Loop if you want to generate the waveform continuously.	-

Setting	Description	Operational Limits
Amplitude	Peak-to-peak voltage of the waveform.	-
DC offset	Mean amplitude displacement from zero.	-
Duty cycle	Percentage of the pulse width in the total period of the waveform. This setting is available only if you select Square as the waveform type.	-
Symmetry	Projection of the line segment between the start and the peak divided by the width of a waveform cycle. The default is 50%. This option is available only if you select Triangle as the waveform type.	-

Custom Mode

The following settings are available when you select the **Custom** mode. The **Custom** mode allows you to generate an arbitrary waveform stored in a data file.

Setting	Description
Source file	Data file you want to import. You can load CSV files from Multisim and Multisim Live and TDMS files from LabVIEW. The TDMS files must contain only analog waveform data. You can also load CSV or TDMS files exported from the Oscilloscope. The imported channel must contain 32,768 samples or less.
Source channel	Channel you want to import. If Source file contains data of multiple channels, you can use Source channel to select which channel of data you want to import to the FGen/Arb.
Trigger source	Trigger signal.

Setting	Description	
	 Immediate—The signal generation begins immediately without any internal or external trigger source. TRIG—The instrument uses the TRIGGER channel on the NI ELVIS III as the trigger signal. 	
Gain	Scaling factor that the instrument applies to the amplitude of the loaded waveform. The range of the output amplitude is -10 V to 10 V.	
Update rate	Number of samples that the instrument generates per second. The range of Update rate is 0 MS/s to 100 MS/s. The resolution of Update rate is 0.001 S/s.	
Generation mode	Mode of the waveform generation. Select Run Once if you only want to generate the waveform once. Select Loop if you want to generate the waveform continuously.	
Preview graph	Displays the waveform stored in the data file. It may differ from the real waveform generated by the instrument.	

Related concepts:

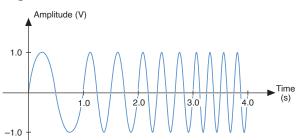
Frequency Sweep

Programming the Function and Arbitrary Waveform Generator You can use the Function and Arbitrary Waveform Generator VIs installed with the LabVIEW ELVIS III Toolkit to program the Function and Arbitrary Waveform Generator (FGen/Arb) instrument on the NI ELVIS III. Find the Function and Arbitrary Waveform Generator VIs on the Academic I/O » Instruments » Function and Arbitrary Waveform Generator subpalette on the Functions palette.

Instruments			B
↑ Q Search	🔦 Customize 🔻		
Oscilloscope	Function Generator		VPS
Logic	Bode	IV Analyzer	

Related information:

<u>Function and Arbitrary Waveform Generator VIs</u>


Frequency Sweep

You can generate sweep signals with the Function and Arbitrary Waveform Generator (FGen/Arb). During a frequency sweep, the frequency of the sweep signal changes continuously from the minimum to the maximum or vice versa, at the interval you specify.

The following table shows an example of configuring the FGen/Arb to generate a swept sine wave.

Control	Value
Mode	Sweep
Waveform	Sine
Start frequency	1.0 Hz
Stop frequency	4.0 Hz
Step	1.0 Hz
Step interval	1.0 s
Generation mode	Run once

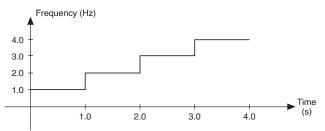
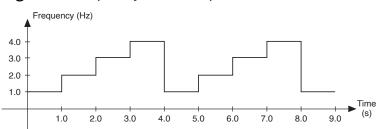

When you configure the FGen/Arb as in the previous table, the instrument generates a waveform as follows:

Figure 1. Output waveform when Generation mode is Run Once

The following figure explains how the frequency increases from 1.0 Hz to 4.0 Hz at the interval of 1.0 Hz. The frequency changes every one second, as specified in **Step interval**.


Figure 2. Frequency of the output waveform when Generation mode is Run Once

If **Generation mode** is set to **Loop**, the instrument generates the waveform continuously. The frequency first increases from 1.0 Hz to 4.0 Hz, and then goes back to 1.0 Hz and increases to 4.0 Hz again. The sweep continues until the instrument stops running.

Figure 3. Output waveform when Generation mode is Loop

Figure 4. Frequency of the output waveform when Generation mode is Loop

Related reference:

• Configuration Options (FGen/Arb)

Function and Arbitrary Waveform Generator Specifications

Specifications are **Typical** unless otherwise noted.

Number of channels	2
Maximum update rate (per channel)	100 MS/s
Resolution	14 bits
Slew rate	188 V/µs
Small signal bandwidth (-3 dB)	15 MHz with no load

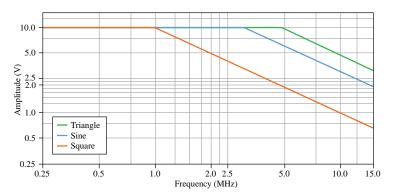


Figure 5. Function Generator Maximum Amplitude vs Frequency

Gain Setting	AC Amplitude Range	DC Offset Range	Resolu	ution	Amplitude Error	DC Offset Error	Total Output Range
High gain	±10 V	±10 V	1.25 m	V/LSB	±0.5%	±50 mV	±10 V
Low gain	±2.5 V	±10 V	0.3 m\	//LSB	±0.5%	±20 mV	±10 V
Output impedance			50 Ω				
DC current drive			30 mA maximum				
Overvoltage protection (per channel)			±10 V, short-circuit to ground				
Power-on state			High Impedance				

Table 3. Output Range

Data Generator

The Data Generator generates analog signals by using the analog output on the NI ELVIS III.

Find out more about the Data Generator in the following topics:

- <u>Connecting Signals to Analog Output</u>
- <u>Generating a Waveform</u>
- <u>Configuration Options</u>
- Programming Analog Output with LabVIEW
- Analog Output Specifications

Related reference:

<u>Choosing the Instruments</u>

Generating a Waveform (Data Generator)

This example illustrates how to generate a static triangle waveform by using the Data Generator (Data Gen).

- 1. Install the NI ELVIS III prototyping board onto the NI ELVIS III workstation.
- 2. Connect a jumper wire between Bank A, Channel AO0 (A/AO0) and the circuit under test, and between Bank A, AGND and GND of the circuit under test.

Refer to <u>Connecting Signals to Analog Output</u> for more details about connecting to the analog output.

3. Press the application board power button on the workstation to power on the application board.

Caution To ensure safety, you must connect the wires before powering on the application board.

- 4. Launch the Data Gen Soft Front Panel (SFP).
- 5. Select **Static** as the channel mode and **Triangle** as the waveform type for A/AO0.
- 6. Select the desired waveform settings.
- 7. Click **Run** to start signal generation. While the instrument is running, you can modify the waveform in real time by adjusting the settings.

Configuration Options (Data Generator)

Use configuration options on the Data Generator (Data Gen) Soft Front Panel (SFP) to control how to generate analog signals. For example, you can generate two or more phase-shifted waveforms.

Toolbar Controls

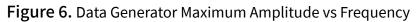
Use toolbar controls to perform common tasks for the Data Gen. The toolbar is located at the top of the SFP.

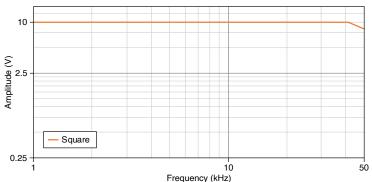
Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🔽	Click do open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking and launch it again.

Control	Description
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .

Static Mode

The following settings are available when you select the **Static** mode:


Setting	Description
Waveform	Type of waveform you want to generate.
Frequency	Frequency of the waveform. This option is available only if you select Sine , Square , or Triangle as the waveform type.
Amplitude	Peak-to-peak voltage of the waveform. This option is available only if you select Sine , Square , or Triangle as the waveform type.
DC offset	Mean amplitude displacement from zero. This option is available only if you select Sine , Square , or Triangle as the waveform type.
Phase	Initial phase, in degrees, of the waveform. This option is available only if you select


Setting	Description	
	Sine, Square, or Triangle as the waveform type.	
	Note If you want to generate phase- shifted waveforms, you can open multiple channels and set different phases for the waveforms. If you want a stable phase shift, ensure that the waveforms are synchronized. To achieve that, the waveforms must have the same frequency and you are not recommended to change their frequencies when the SFP is running.	
Duty cycle	Percentage of the pulse width in the total period of the waveform. This option is available only if you select Square as the waveform type.	
Symmetry	Projection of the line segment between the start and the peak divided by the width of a waveform cycle. The default is 50%. This option is available only if you select Triangle as the waveform type.	
Voltage	Amplitude displacement from zero. This option is available	

Setting	Description
	only if you select DC as the waveform type.

Data Generator Maximum Amplitude vs Frequency

For sine and triangle waveforms, the maximum amplitude is 10 V (20 V peak-topeak) when the frequency is within the valid range of 100 mHz to 50 kHz. But for a square waveform, the maximum amplitude is less than 10 V when the frequency is close to its upper limit. The following figure illustrates the relationship between maximum amplitude and frequency for a square waveform.

The output range for the Data Gen is ±10 V. The output waveform will be distorted when **Amplitude** plus **DC offset** exceeds the total output range. Refer to the following tables to learn more about the output range.

Table 4. Output Range

AC Amplitude Range	DC Offset Range	Frequency	Total Output Range
±10 V	±10 V	[100 mHz, 50 kHz]	±10 V

Digital Multimeter

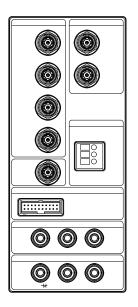
You can use the Digital Multimeter (DMM) to take a variety of measurements.

These measurements include:

- DC or AC voltage
- DC or AC current
- Resistance

- Capacitance
- Inductance
- Voltage drop across a diode
- Continuity

Find an introductory video about using the instrument on <u>ni.com</u>.


Find out more about the Digital Multimeter in the following topics:

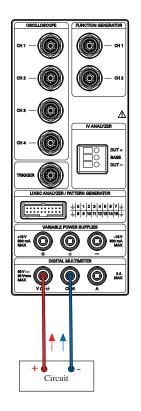
- <u>Connecting Signals to the Digital Multimeter (DMM)</u>
- <u>Taking a Measurement</u>
- <u>Configuration Options (DMM)</u>
- Programming the Digital Multimeter
- <u>Digital Multimeter (DMM) Specifications</u>

Connecting Signals to the Digital Multimeter (DMM)

The DMM on the NI ELVIS III is isolated and its terminals are the three banana jacks on the instrument panel. For DC Voltage, AC Voltage, Resistance, Diode, and Continuity Test modes, connect signals to the V Ω and COM connectors. For DC Current and AC Current modes, connect signals to the A and COM connectors. For Capacitance and Inductance modes, connect signals to the Current-Voltage (IV) Analyzer connector. The Current-Voltage (IV) Analyzer is non-isolated and its terminals are three screw terminals on the instrument panel.

Note The DMM has a fuse for over-current protection. The DC Current and AC Current modes are disabled if the fuse is blown. Replace the fuse (2.5 A fuse, 5MF2.5-R) to re-enable the current modes. Refer to the connectors diagram in <u>Using the Instruments</u> to locate the DMM fuse.

1. Capacitance and inductance measurements are done through the Current-Voltage (IV) Analyzer connector


Note For capacitance and inductance measurements, insert the component directly into the IV Analyzer screw terminals to achieve the highest accuracy measurements. In cases where the component cannot be directly inserted, use short wires to minimize parasitic effects that impact the overall impedance of the device under test.

Taking a Measurement

This example illustrates how to use the Digital Multimeter (DMM) to measure voltage.

The procedure for taking other types of measurements is similar. Refer to the <u>Configuration Options (DMM)</u> section to learn about other measurement modes.

1. Connect the circuit under test to the NI ELVIS III, as shown in the following diagram:

Refer to <u>Connecting Signals to the Digital Multimeter (DMM)</u> for more details about connecting to the DMM.

- 2. Launch the DMM Soft Front Panel (SFP).
- 3. Depending on the type of the input signal, click the **DC voltage** or **AC voltage** button, and select a proper range.
- 4. Click **Run** to start measuring the signal. Read the real-time voltage from the panel. While the instrument is running, you can change the measurement mode and the range by adjusting the settings on the panel.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

Launching the Soft Front Panels

Configuration Options (DMM)

Use configuration options on the Digital Multimeter (DMM) Soft Front Panel (SFP) to decide the measurement mode and range. For example, you can measure DC voltage or AC voltage.

Toolbar Controls

Use the toolbar controls to perform common tasks for the DMM. The toolbar is located at the top of the SFP.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🚽	Click 🛃 to open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking 🔀 and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .

The buttons on the DMM SFP represent different types of measurements. To enable a measurement mode, click the corresponding button.

Measurement mode	Button	Description
DC voltage	V	Measures the DC component of a voltage source.

Measurement mode	Button	Description
AC voltage	\widetilde{V}	Measures the AC component of a voltage source.
DC current	Ā	Measures the DC component of a current source.
AC current	Ã	Measures the AC component of a current source.
Resistance	Ω	Measures resistance.
Capacitance	-11-	Measures capacitance.
Inductance	())),	Measures inductance.
Diode	-	Measures the voltage drop across a diode. When you select Diode, Range specifies the threshold for a valid diode measurement.
Continuity	0)))	Tests for continuity. The threshold for continuity measurements is 15 Ω. The DMM beeps when it detects a short circuit.

Range specifies the range of the measurement. When you select **Automatic**, the DMM automatically chooses the range that suits the input signal.

In the **Connections** section, the SFP highlights the channels to connect to depending on the measurement mode. For example, when the measurement mode is **DC current** or **AC current**, the **Connections** section highlights the channels as follows:

\sim	Connections		
		OM COM	

When the measurement mode is **Capacitance** or **Inductance**, the **Connections** section highlights the terminals on the NI ELVIS III to connect to the device under test (DUT):

\sim	Connections	
		ASE

Programming the Digital Multimeter

You can use the Digital Multimeter VIs installed with the LabVIEW ELVIS III Toolkit to program the Digital Multimeter (DMM) instrument on the NI ELVIS III. Find the Digital Multimeter VIs on the **Academic I/O** » **Instruments** » **Digital Multimeter** subpalette on the Functions palette.

Instrume	ents			E
1	Search	🔦 Customize 🔻		
्ष Oscil	loscope	Function Generator		VPS
تو ل	ogic	Bode	IV Analyzer	

Related information:

<u>Digital Multimeter VIs</u>

Digital Multimeter (DMM) Specifications Specifications are **Typical** unless otherwise noted.

Isolated functions	DC/AC voltage, DC/AC current, resistance, diode voltage, diode continuity
Non-isolated functions	Capacitance, inductance
Isolation level	Functional isolation
Resolution	4.5 digits
Input impedance	10 ΜΩ
Input coupling	DC/AC
Connectivity	Banana jacks
Voltage input protection	±60 V
Current input protection	2.5 A fuse, 5MF2.5-R
Measurements	
Voltage measurement	
DC ranges	50 mV DC, 500 mV DC, 5 V DC, 50 V DC
AC ranges	50 mV RMS, 500 mV RMS, 5 V RMS, 30 V RMS
Input frequency range (AC voltage)	40 Hz to 1 kHz
DC voltage measurement accuracy (50 mV DC)	0.2% of range
DC voltage measurement accuracy (500 mV DC, 5 V DC, 50 V DC)	0.1% of range
AC voltage measurement accuracy at 50 Hz and 60 Hz (50 mV RMS)	0.2% of range
AC voltage measurement accuracy at 50 Hz and 60 Hz (500 mV RMS, 5 V RMS, 30 V RMS)	0.1% of range
Current measurement	
DC ranges	2 A DC
AC ranges	2 A RMS
Shunt resistance	20 mΩ
Input frequency range (AC current)	40 Hz to 1 kHz

DC current measurement accuracy	0.1% of range
AC current measurement accuracy at 50 Hz and 60 Hz	0.1% of range
Resistance measurement	
Ranges	50 Ω, 500 Ω, 5 kΩ, 50 kΩ, 500 kΩ, 5 MΩ, 50 MΩ
Resistance measurement accuracy (500 Ω , 5 k Ω , 50 k Ω , 500 k Ω , 5 M Ω)	0.1% of range
Resistance measurement accuracy (50 Ω , 50 M Ω)	1% of range

Table 5. Capacitance Measurement Range

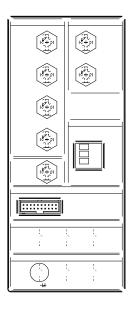
Range	Effective Frequency		Effective Test Resistance	
50 pF to 500 pF	10 kHz		100 kΩ	
500 pF to 5 nF	1 kHz		10 kΩ	
5 nF to 50 nF	1 kHz		10 kΩ	
50 nF to 500 nF	1 kHz		1 kΩ	
500 nF to 5 μF	1 kHz		1 kΩ	
5 μF to 50 μF	1 kHz		100 Ω	
50 μF to 500 μF	100 Hz		100 Ω	
Capacitance measurement accuracy		1% of range		

Table 6. Inductance Measurement Range

Range	Effective Frequency	Effective Test Resistance
10 μH to 100 μH	100 kHz	100 Ω
100 μH to 1 mH	10 kHz	100 Ω
1 mH to 10 mH	10 kHz	1 kΩ
10 mH to 100 mH	1 kHz	1 kΩ
Inductance measurement	t accuracy 1% of ran	ige

Variable Power Supply

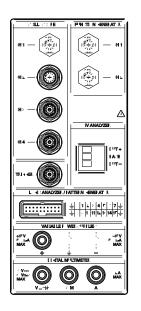
The Variable Power Supply (VPS) provides two user programmable DC voltage outputs on the NI ELVIS III. The two outputs are independently configurable, one providing positive voltages and the other negative voltages.


Find an introductory video about using the instrument on <u>ni.com</u>.

Find out more about the Variable Power Supply in the following topics:

- <u>Connecting Signals to the Variable Power Supplies</u>
- <u>Supplying a Voltage</u>
- <u>Configuration Options (VPS)</u>
- Programming the Variable Power Supply
- <u>Voltage Sweep</u>
- Variable Power Supplies Specifications

Connecting Signals to the Variable Power Supplies


The Variable Power Supplies (VPS) provides access to the adjustable voltage outputs through three banana jacks. Voltages from +1 V to +15 V are supplied by the "+" terminal, voltages from -1 V to -15 V are supplied by the "–" terminal, and both outputs share a common ground provided by the ground terminal. The positive and negative voltage outputs can be used simultaneously and independently.

Supplying a Voltage

This example illustrates how to supply a voltage with the Variable Power Supplies (VPS) instrument:

1. Connect VPS +/- and ground to the circuit under test, as shown in the following diagram:

Refer to <u>Connecting Signals to the Variable Power Supplies</u> for more details about connecting to the VPS.

- 2. Launch the VPS Soft Front Panel (SFP).
- 3. Adjust the settings for the channel you have connected to.
- 4. Click **Run** to start supplying a voltage. If the instrument is in **Static** mode, you can modify the voltage in real time by adjusting the setting while the instrument is running.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

Launching the Soft Front Panels

Configuration Options (VPS)

Use configuration options on the Variable Power Supply (VPS) Soft Front Panel (SFP) to configure DC voltage outputs. For example, you can configure the voltage range.

Toolbar Controls

Use the toolbar controls to perform common tasks for the VPS. The toolbar is located at the top of the SFP.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🚽	Click 🛃 to open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking 🗙 and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .

Static Mode

When setting the VPS to the **Static** mode, you can control the voltage and current outputs by changing the **Voltage** and **Current limit** settings. The display on the panel shows the actual voltage, current, and power readings of the output signal.

Setting	Description	Operational Limits
Voltage	Target voltage level.Note A slight deviation exists between the actual voltage and the target voltage due to hardware configuration and the input impedance of the circuit under test.	Range: 1 V to 15 V for the + terminal, -15 V to -1 V for the - terminal Resolution: 10 mV
Current limit	Maximum current sourced from the instrument. Note If the actual current surpasses Current limit, the current output is coerced to a value smaller than and close to Current limit to protect your hardware. The voltage output is also coerced to a value smaller than Voltage and an increase in Voltage does not result in an	Range: 20 mA to 500 mA for the + terminal, -500 mA to -20 mA for the - terminal

Setting	Description	Operational Limits
	increase in the voltage output.	
	-	

Sweep Mode

When you set the VPS to the **Sweep** mode, the VPS ramps voltage outputs between the start and stop voltages you specify. The VPS provides the following configuration options. The display on the panel shows the actual voltage, current, and power readings of the output signal.

Setting	Description	Operational Limits
Start voltage	Target voltage at which the voltage sweep starts. Start voltage can be either greater than or less than Stop voltage .	Range: 1 V to 15 V for the + terminal, -15 V to -1 V for the - terminal Resolution: 10 mV
Stop voltage	Target voltage at which the voltage sweep stops. Start voltage can be either greater than or less than Stop voltage .	Range: 1 V to 15 V for the + terminal, -15 V to -1 V for the - terminal Resolution: 10 mV
Step	Voltage interval between each output signal during a voltage sweep. The absolute value of Step must be less than the difference between Start voltage and Stop voltage .	Range: 0 V to 14 V, less than V _{Start} - V _{stop} Resolution: 10 mV
Step interval	Time interval between each output signal during a voltage sweep.	Range: 0 s to 86400 s
Generation mode	Mode in which the device generates voltage. Select Run Once if you want to generate the voltage sweep only once. Select Loop if you want to	-

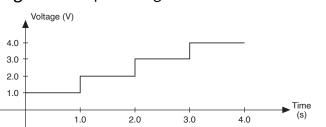
Setting	Description	Operational Limits
	generate the voltage sweep continuously.	
Current limit	Maximum current sourced from the instrument. Note If the actual current surpasses Current limit, the current output is coerced to a value smaller than and close to Current limit to protect your hardware. The voltage output is also coerced to a value smaller than Voltage and an increase in Voltage does not result in an increase in the voltage output.	Range: 20 mA to 500 mA for the + terminal, -500 mA to -20 mA for the - terminal

Programming the Variable Power Supply

You can use the Variable Power Supply VIs installed with the LabVIEW ELVIS III Toolkit to program the Variable Power Supply (VPS) instrument on the NI ELVIS III. Find the Variable Power Supply VIs on the **Academic I/O** » **Instruments** » **Variable Power Supply** subpalette on the Functions palette.

Instrur	ments			B
1	$\mathbf{Q}_{\mathrm{Search}}$	🔦 Customize 🔻		
Os	cilloscope	Function Generator	DMM	VPS
	Logic	Bode	IV Analyzer	

Related information:


Variable Power Supply VIs

Voltage Sweep

During a voltage sweep, the voltage of the sweep signal changes continuously from the minimum to the maximum or vice versa, at the interval you specify. To generate a sweep signal, select the **Sweep** mode for the Variable Power Supply (VPS). The following table shows an example of configuring the VPS to generate a voltage sweep.

Control	Value
Mode	Sweep
Start voltage	1.0 V
Stop voltage	4.0 V
Step	1.0 V
Step interval	1.0 s
Generation mode	Run once

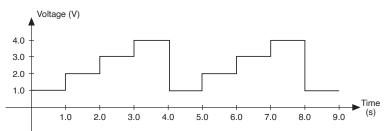

When you configure the VPS as specified in the previous table, the instrument generates a voltage sweep as follows:

Figure 7. Output voltage when Generation mode is Run once

If **Generation mode** is set to **Loop**, the instrument generates the voltage sweep continuously. The voltage first increases from 1 V to 4 V, and then goes back to 1 V and increases to 4 V again. The sweep continues until the instrument stops running.

Figure 8. Output voltage when Generation mode is Loop

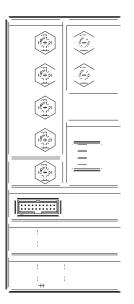
Variable Power Supplies Specifications

Specifications are **Typical** unless otherwise noted.

Notice Exceeding the power limits may cause unpredictable device behavior.

Positive variable power output	
Output voltage	+1 V to +15 V
Output current	+500 mA maximum
DC Voltage accuracy	±50 mV - I _{out} × 0.25 mV/mA
Ripple and noise	20 mV _{pk-pk}
Voltage readback accuracy	±15 mV
Current readback accuracy	±5 mA
Negative variable power output	

Output voltage	-1 V to -15 V
Output current	-500 mA maximum
DC Voltage accuracy	\pm 50 mV + $ I_{out} $ × 0.25 mV/mA
Ripple and noise	55 mV _{pk-pk} + $ V_{out} $ × 10 mV _{pk-pk} /V
Voltage readback accuracy	±15 mV
Current readback accuracy	±5 mA

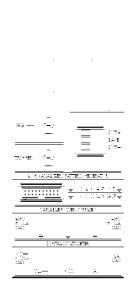

Bode Analyzer

The Bode Analyzer measures the gain and phase versus frequency for linear circuits. Find an introductory video about using the instrument on <u>ni.com</u>. Find out more about the Bode Analyzer in the following topics:

- <u>Connecting Signals to the Bode Analyzer</u>
- Analyzing Frequency Response
- <u>Configuration Options (Bode Analyzer)</u>
- <u>Programming the Bode Analyzer</u>
- Bode Analyzer Specifications

Connecting Signals to the Bode Analyzer

The Bode Analyzer Soft Front Panel (SFP) uses the Function Generator on the NI ELVIS III to output a stimulus and then uses the Oscilloscope on the NI ELVIS III to measure the stimulus and multiple responses.



Analyzing Frequency Response

This topic tells you how to set up the hardware and start analyzing frequency response.

Complete the following steps:

- 1. Build the circuit for Bode analysis on the NI ELVIS III Application Board.
- 2. Connect Function Generator CH 1 and Oscilloscope CH1 to the input of the circuit. Connect Oscilloscope CH 2 to the output of the circuit, as shown in the following diagram:

Refer to <u>Connecting Signals to the Bode Analyzer</u> for more details about connecting to the Bode.

- 3. Launch the Bode Analyzer.
- 4. In the **Stimulus channel** section, adjust the parameters as desired.
- 5. Click the **Run** button. Results display in the Gain and Phase sections of the display.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

• Launching the Soft Front Panels

Configuration Options (Bode Analyzer)

Use configuration options on the Bode Analyzer (Bode) Soft Front Panel (SFP) to adjust the stimulus signals and manipulate the display of response signals. For example, you can configure the frequency range of a stimulus signal.

- Toolbar Controls
- <u>Stimulus Channel Settings</u>
- <u>Response Channel Settings</u>
- <u>Reference Channel Settings</u>
- <u>Display Window</u>

Note Click the expand arrow 2 near the upper right corner of the SFP to expand the configuration pane if it is collapsed by default.

Toolbar Controls (Bode Analyzer)

Use the toolbar controls to perform common tasks for Bode Analyzer. The toolbar is located at the top of the SFP.

The layout of the controls may vary depending on the device from which you launch the SFP. Some controls are hidden by default when you resize the SFP. Click the ellipsis on the toolbar to access hidden controls.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🚽	Click is to open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the

Control	Description
	instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .
Collapse/Expand	Collapses or expands the configuration pane on the right side of the panel.

Stimulus Channel Settings

Use this section of the Bode Analyzer to enter basic measurement settings.

The following **Stimulus channel** settings are available.

Setting	Description	Operational Limits
Start frequency	Specifies the frequency at which to start the Bode plot sweep.	Range: 1 Hz to 2.5 MHz Resolution: 1 Hz
Stop frequency	Specifies the frequency at which to stop the Bode plot sweep.	Range: 1 Hz to 15 MHz Resolution: 1 Hz
Steps per decade	Specifies the number of evenly spaced frequency points to sweep per decade.	Range: 1 to 1000 Resolution: 1
Peak amplitude	Peak amplitude of the sine wave during the sweep.	Range: 50 mV to 10 V Resolution: 10 mV

Response Channel Settings

The following **Response channel** settings are available.

Setting	Description
Colored bar	Matches the color of the corresponding channel's trace on the display. It displays when the channel is set to show on the graph (toggle is on.)
Channel name	For information only, for example, Response 1. This is not editable.
Toggle	Shows/hides graph trace.

Setting	Description
Assigned channel indicator	Shows below any response that is toggled on, for example, Oscilloscope CH2. This refers to the name of the connector on the device.

Reference Channel Settings

Configure the reference channel settings to compare the measured signal with the signal on a reference channel.

The following **Reference channel** settings are available.

Setting	Description
Colored bar	Matches the color of this channel's trace on the graph. It is only shown when the channel is set to show on the graph (toggle is on.)
Channel name	For information only, for example, Reference 1. This is not editable.
Toggle	Shows/hides graph trace.
Mode	Origin of data being referenced. This is a Multisim style CSV file.
Source file	The Multisim style CSV file you wish to reference. This will plot on the display.
Channel	Auto-populates with valid choices from the Source file . Determines what channel in the file to display data from. Select the desired channel.

Display Window (Bode Analyzer)

Use **Cursors** to measure a given point on the signal trace, or compare the differences between two points.

Cursor Mode	Description
Off	Turns off the cursors.
Track	Cursor positions are restricted to the acquired data points on a trace.
Manual	Cursors positions are not restricted to the acquired data points on a trace.

When **Cursors** is set to **Manual** or **Track**, a table appears above the display with the following data:

Column	Description
C1	Displays the Frequency, Gain and Phase readings for Cursor 1. Use the drop-down beside C1 to select the response to measure.
C2	Displays the Frequency, Gain and Phase readings for Cursor 2. Use the drop-down beside C2 to select the response to measure.
∆ Value	Displays the Frequency, Gain and Phase readings for C2 - C1.

Related reference:

<u>Response Channel Settings</u>

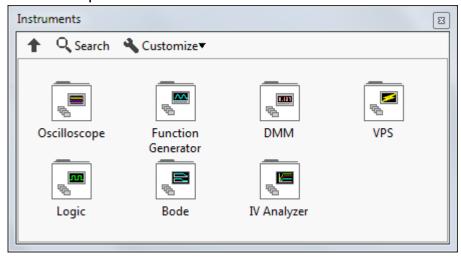
Display Controls (Bode)

Use the display controls to manipulate the display of the data on the graph.

Click (to access these controls:

Control	Description
Zoom all	Click to view all data on the graph. Useful when you have zoomed or panned the display.
Autoscale	Select On to change the scale to display all the data. Select Off to keep the scale consistent. Data may flow off the display with this setting, or not fill the display.
Gain mapping	Choose Logarithmic or Linear for the Gain axis.
Phase mapping	Choose Degrees or Radians for the Phase axis.
Display with phase shift	Select to show phase shift display options for Response 1 through Response 3, and Reference 1 and Reference 2.
	If Degrees is selected in Phase mapping , Response 1 through Response 3, and Reference

Control	Description
	1 and Reference 2 will each have a drop-down with phase shift display options in degrees.
	If Radians is selected in Phase mapping , Response 1 through Response 3, and Reference 1 and Reference 2 will each have a drop-down with phase shift display options in rads.


Zooming and Panning

Use the mouse to do the following:

Mouse Action	Result
Scroll mouse wheel	Zooms in/out.
Hold down left button and drag	Pans left/right, up/down.

Programming the Bode Analyzer

You can use the Bode Analyzer VIs installed with the LabVIEW ELVIS III Toolkit to program the Bode Analyzer instrument on the NI ELVIS III. Find the Bode Analyzer VIs on the **Academic I/O** » **Instruments** » **Bode Analyzer** subpalette on the Functions palette.

Related information:

Bode Analyzer VIs

Bode Analyzer Specifications

Specifications are **Typical** unless otherwise noted.

Oscilloscope

Number of channels	4
Resolution	14 bits
Bandwidth	50 MHz at -3 dB
Input impedance	1 MΩ 15 pF
Overvoltage protection	±50 V
Accuracy	2% of input + 1% of full scale

Table 7. Input Range

Range	Full Scale	Offset	Offset Accuracy
High gain (≤200 mV/div)	2 V peak-to-peak	±1 V	±25 mV
Low gain (>200 mV/div)	50 V peak-to-peak	±25 V	±625 mV

Note Input voltages should not exceed 50 V DC or 30 V RMS.

Function and Arbitrary Waveform Generator

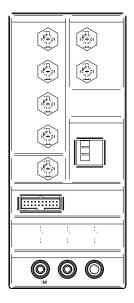
Number of channels	2
Maximum update rate (per channel)	100 MS/s
Resolution	14 bits
Slew rate	188 V/μs
Small signal bandwidth (-3 dB)	15 MHz with no load

Gain Setting	AC Amplitude Range	DC Offset Range	Resolu	ition	Amplitude Error	DC Offset Error	Total Output Range
High gain	±10 V	±10 V	1.25 m	V/LSB	±0.5%	±50 mV	±10 V
Low gain	±2.5 V	±10 V	0.3 m\	//LSB	±0.5%	±20 mV	±10 V
Output impedance		50 Ω					
DC current drive		30 mA maximum					
Overvoltage protection (per channel)		±10 V, short-circuit to ground					
Power-on state		High Impedance					

Table 8. Output Range

Current-Voltage Analyzer

Use the Current-Voltage (IV) Analyzer to measure the current-voltage (IV) response of the following devices:


- Diode
- PNP BJT
- NPN BJT

Find an introductory video about using the instrument on <u>ni.com</u>. Find out more about the Current-Voltage (IV) Analyzer in the following topics:

- <u>Connecting Signals to the IV Analyzer</u>
- <u>Analyzing a Diode</u>
- Analyzing a BJT
- <u>Configuration Options (IV Analyzer)</u>
- Programming the IV Analyzer
- <u>Current-Voltage (IV) Analyzer Specifications</u>

Connecting Signals to the IV Analyzer

The Current-Voltage (IV) Analyzer on the NI ELVIS III instrument panel includes DUT (device under test) connectors. Use the DUT+, DUT–, and BASE connectors to plot the current-voltage response of a NPN or PNP bipolar transistor. Use DUT+ and DUT- to plot the current-voltage response of a diode.

Note Insert the component directly into the IV Analyzer screw terminals to achieve the highest accuracy measurements. In cases where the component cannot be directly inserted, use short wires to minimize parasitic effects that impact the overall impedance of the device under test.

Analyzing a Diode

Complete the following steps to run current-voltage (IV) analyses for a diode:

- 1. Launch the IV Analyzer Soft Front Panel (SFP).
- 2. Confirm that **Diode** is selected under **Analyzer mode**.
- 3. Connect a diode to the IV ANALYZER terminals on the NI ELVIS III. Attach its anode to DUT+ and its cathode to DUT-. This is shown in the **Connections** diagram under <u>Analyzer & hardware</u> on the SFP.
- 4. Adjust the parameters as desired.
- 5. Click the **Run** button.
- 6. Use the cursors to take measurements.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

• Launching the Soft Front Panels

Analyzing a BJT

Complete the following steps to run current-voltage (IV) analyses for a BJT:

- 1. Launch the IV Analyzer Soft Front Panel (SFP).
- 2. Select Transistor under Analyzer mode.
- 3. Connect a BJT to the IV ANALYZER terminals on the NI ELVIS III. Attach its collector to DUT+, its base to BASE, and its emitter to DUT-. This is shown in the **Connections** diagram under <u>Analyzer & hardware</u> on the SFP.

Note Insert the component directly into the IV Analyzer screw terminals to achieve the highest accuracy measurements. In cases where the component cannot be directly inserted, use short wires to minimize parasitic effects that impact the overall impedance of the device under test.

- 4. Select NPN or PNP under Transistor type.
- 5. Adjust the parameters as desired.
- 6. Click the **Run** button.
- 7. Use the cursors to take measurements.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

Launching the Soft Front Panels

Configuration Options (IV Analyzer)

Use configuration options on the Current-Voltage (IV) Analyzer Soft Front Panel (SFP) to control how to acquire and analyze the current-voltage response and decide the unit under test. For example, you can choose to measure a diode or a transistor.

- Toolbar Controls
- Analyzer & Hardware Settings
- Voltage Sweep Settings
- <u>Current Range Settings</u>
- <u>Collector Voltage Sweep Settings</u>
- Base Current Sweep Settings
- <u>Display Window</u>

Note Click the expand arrow near the upper right corner of the SFP to expand the configuration pane if it is collapsed by default.

Toolbar Controls (IV Analyzer)

Use the toolbar controls to perform common tasks for Current-Voltage Analyzer. The toolbar is located at the top of the SFP.

The layout of the controls may vary depending on the device from which you launch the SFP. Some controls are hidden by default when you resize the SFP. Click the ellipsis on the toolbar to access hidden controls.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 👻	Click 🛃 to open the current SFP in a separate browser window. To restore it to the original

Control	Description
	window, close the SFP by clicking 🔀 and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .
Collapse/Expand 🔯>	Collapses or expands the configuration pane on the right side of the panel.

Analyzer & Hardware Settings (IV Analyzer)

Use this section of the IV Analyzer to enter basic measurement settings.

Diode

The following settings are available when you select **Diode** for **Analyzer mode**.

Setting	Description
Series resistance	Appears when Diode is selected in Analyzer mode . This controls an internal variable resistor in the NI ELVIS III that is connected to the DUT+ connector. This resistor limits the current through the diode under test. The steps in this control are logarithmic: 10Ω , 100Ω , $1 k\Omega$, $10 k\Omega$, $100 k\Omega$, $1 M\Omega$.
Connections	Connection diagram that shows how to connect the diode being measured to the NI ELVIS III.

Transistor

The following settings are available when you select **Transistor** for **Analyzer mode**.

Setting	Description
Transistor type	This appears when Transistor is selected in Analyzer mode . Select NPN or PNP.
Collector resistance	Appears when Transistor is selected in Analyzer mode. This controls an internal variable resistor in the NI ELVIS III that is connected to the DUT+ connector. This resistor limits the current through the transistor under test. The steps in this control are logarithmic: 10Ω , 100Ω , $1 k\Omega$, $10 k\Omega$, $100 k\Omega$, $1 M\Omega$.
Connections	Connection diagram that shows how to connect the transistor being measured to the NI ELVIS III. This changes to reflect the selected Transistor type .

Voltage Sweep Settings (IV Analyzer)

To better display the signals on the graph, adjust the voltage sweep settings according to the parameters of the diode under test.

The following **Voltage sweep** settings are available.

Setting	Description	Operational Limits
Start	Initial value of voltage.	Range: -10 V to 10 V Resolution: 10 mV
Stop	Final value of voltage.	Range: -10 V to 10 V Resolution: 10 mV
Step	Voltage interval during a voltage sweep.	Range: 10 mV to (V _{stop} - V _{start}) Resolution: 10 mV

Note The settings appear for the Transistor Analyzer mode only.

Current Range Settings (IV Analyzer)

To better display measured signals on the graph, adjust the current range settings according to the parameters of the diode under test.

The following **Current range** settings are available.

Setting	Description	Operational Limits
Negative	Maximum negative value of current during the sweep.	Range: -30 mA to 0 μA Resolution: 1 μA
Positive	Maximum positive value of current during the sweep.	Range: 0 μA to 30 mA Resolution: 1 μA

Note The settings appear for the Transistor **Analyzer mode** only.

Collector Voltage Sweep Settings (IV Analyzer)

To better display measured signals on the graph, adjust the collector voltage sweep settings according to the parameters of the transistor under test.

The following **Collector voltage sweep** settings are available.

Setting	Description	Operational Limits
Vc start	Initial collector voltage.	Range: -10 V to 10 V Resolution: 10 mV
Vc stop	Final collector voltage.	Range: -10 V to 10 V Resolution: 10 mV
Vc step	Size of the collector voltage steps during the sweep.	Range: 10 mV to (Vc _{stop} - Vc _{start}) Resolution: 10 mV
Ic limit	Maximum collector current during the sweep.	Range: 0 μA to 30 mA Resolution: 1 μA

Note The settings appear for the Transistor Analyzer mode only.

Base Current Sweep Settings (IV Analyzer)

To better display measured signals on the graph, adjust the base current sweep settings according to the parameters of the transistor under test.

SettingDescriptionOperational LimitsIb startInitial base current.Range: 0 μA to 300 μA
Resolution: 1 μAIb stepCurrent interval during a base
current sweep.Range: 1 μA to 200 μA
Resolution: 1 μACurve countNumber of curves in the sweep.Range: 1 to 16
Resolution: 1

The following **Base current sweep** settings are available.

Note The settings appear for the Transistor Analyzer mode only.

Display Window (IV Analyzer)

Use **Cursors** to measure a given point on the signal trace, or compare the differences between two points.

Cursor Mode	Description
Off	Turns off the cursors.
Track	Cursor positions are restricted to the acquired data points on a trace.
Manual	Cursors positions are not restricted to the acquired data points on a trace.

When **Cursors** is set to **Manual** or **Track**, a table appears above the display with the following data:

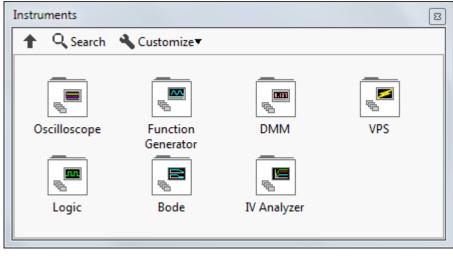
Column	Description
C1	Displays the Voltage and Current readings for Cursor 1.
C2	Displays the Voltage and Current readings for Cursor 2.
∆ Value	Displays the absolute value of the Voltage and Current readings for C2 - C1.

Display Controls (IV)

Use the display controls to manipulate the display of the data on the graph.

Click (to access these controls:

Control	Description
Zoom all	Click to view all data on the graph. Useful when you have zoomed or panned the display.
Autoscale	Select On to change the scale to display all the data. Select Off to keep the scale consistent. Data may flow off the display with this setting, or not fill the display.


Zooming and Panning

Use the mouse to do the following:

Mouse Action	Result
Scroll mouse wheel	Zooms in/out.
Hold down left button and drag	Pans left/right, up/down.

Programming the IV Analyzer

You can use the IV Analyzer VIs installed with the LabVIEW ELVIS III Toolkit to program the Current-Voltage (IV) Analyzer instrument on the NI ELVIS III. Find the IV Analyzer VIs on the **Academic I/O** » **Instruments** » **IV Analyzer** subpalette on the Functions palette.

Related information:

IV Analyzer VIs

Current-Voltage (IV) Analyzer Specifications

Specifications are **Typical** unless otherwise noted.

2 wire impedance analyzer		
Current range	±30 mA	
Voltage sweep range	±10 V	
Excitation frequency	1 Hz to 15 MHz	
2/3 wire current-voltage analyzer		
Supported devices	Diodes, NPN and PNP bipolar transistors	
Base current range	±1 mA	
Maximum collector current	±30 mA	
Maximum collector voltage	±10 V	

Table 9. Capacitance Measurement Range

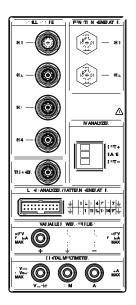
Range	Effective Free	luency	Effective Test Resistance
50 pF to 500 pF	10 kHz		100 kΩ
500 pF to 5 nF	1 kHz		10 kΩ
5 nF to 50 nF	1 kHz		10 kΩ
50 nF to 500 nF	1 kHz		1 kΩ
500 nF to 5 μF	1 kHz		1 kΩ
5 μF to 50 μF	1 kHz		100 Ω
50 μF to 500 μF	100 Hz		100 Ω
Capacitance measurement accuracy		1% of ran	ge

Range	Effective Free	quency	Effective Test Resistance
10 μH to 100 μH	100 kHz		100 Ω
100 µH to 1 mH	10 kHz		100 Ω
1 mH to 10 mH	10 kHz		1 kΩ
10 mH to 100 mH	1 kHz		1 kΩ
Inductance measurement accuracy		1% of ran	Ige

Table 10. Inductance Measurement Range

Logic Analyzer and Pattern Generator

The Logic Analyzer and Pattern Generator (Logic) allows you to record, analyze, and generate digital signals.

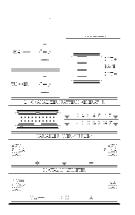

Find an introductory video about using the instrument on <u>ni.com</u>.

Find out more about the Logic Analyzer and Pattern Generator in the following topics:

- <u>Connecting Signals to the Logic Analyzer and Pattern Generator</u>
- Generating and Measuring a Digital Signal
- <u>Configuration Options (Logic)</u>
- <u>TDMS File Format (Logic)</u>
- <u>Programming the Logic Analyzer and Pattern Generator</u>
- Logic Analyzer and Pattern Generator Specifications

Connecting Signals to the Logic Analyzer and Pattern Generator

The Logic Analyzer and Pattern Generator on the NI ELVIS III provides signals from a 20-pin connector on the instrument panel.


Note NI recommends using the cables provided in the Cables and Accessory Kit (786520-01) when connecting to the Logic Analyzer and Pattern Generator.

Generating and Measuring a Digital Signal

This example illustrates how to perform a loopback test with the Logic Analyzer and Pattern Generator (Logic). In the example, you use the Pattern Generator to generate a digital signal, and use the Logic Analyzer to read the signal.

The procedure for generating and measuring other types of digital signals is similar. Refer to the <u>Configuration Options (Logic)</u> section for more information.

1. Connect a jumper wire between the Logic 0 line and the Logic 1 line on the NI ELVIS III, as shown in the following diagram:

Refer to <u>Connecting Signals to the Logic Analyzer and Pattern Generator</u> for more details about connecting to the Logic instrument.

- 2. Launch the Logic Soft Front Panel (SFP).
- 3. Configure the Pattern Generator to generate a clock signal on the Logic 0 line.
- 4. Configure the Logic Analyzer to measure the input signal on the Logic 1 line.
- 5. Click Run.

You can now see two square waves in the display window, one of which is the output signal on the Logic 0 line, and the other is the input signal on the Logic 1 line.

6. If necessary, adjust the trigger settings to stabilize the waveform in the display window and adjust **Time per division** to change the number of periods displayed.

Note You may hear clicking sounds from the NI ELVIS III while operating the SFP. This is expected behavior and is due to the switching of internal relays.

Related information:

Launching the Soft Front Panels

Configuration Options (Logic)

Use configuration options on the Logic Analyzer and Pattern Generator (Logic) Soft Front Panel (SFP) to control how to acquire, display, and analyze digital signals and generate digital patterns. For example, you can configure the lines from which you want to read the digital signals.

- <u>Toolbar Controls</u>
- <u>Trigger Settings</u>
- Horizontal & Acquisition Settings
- Logic Analyzer Settings
- Pattern Generator Settings

Toolbar Controls (Logic)

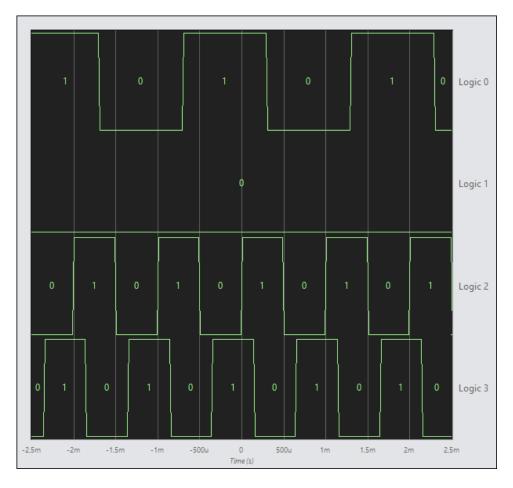
Use the toolbar controls to perform basic tasks for the Logic Analyzer and Pattern Generator (Logic).

Control	Description
Automatic/Default	When you select Automatic , the instrument automatically chooses some settings, including channel and trigger settings, that are best suited to the input signal. When you select Default , the settings fall back to default values.
Run/Stop	Click Run to start continuous data acquisition. Click Stop to stop data acquisition. To take a single-sweep measurement, click Single instead.
Single	Takes a single-sweep measurement.
Status	 Indicates the status of the Logic instrument. Waiting—The instrument is waiting for trigger. Triggered—The instrument is triggered. Completed—The instrument completes one acquisition. Stopped—The instrument is stopped.

Control	Description
Screenshot 👩	Takes a snapshot of the graph.
Export	Exports acquired data to file formats compatible with LabVIEW. The instrument generates a TDMS file. Refer to <u>TDMS File Format (Logic)</u> for more information about the exported TDMS file format.
Help ?	Contains links to related help documentation.
Collapse/Expand	Collapses or expands the configuration pane on the right side of the panel.

Trigger Settings (Logic)

You can configure a trigger by using the trigger settings.


You can configure some settings directly on the panel. To access additional settings, click the configuration button on the top right side of the section.

Setting	Description
Force	Manually triggers the Logic instrument. This setting is available on the panel only.
Mode	 Mode in which the Logic instrument responds to a trigger. Automatic—The instrument waits momentarily for any occurrence of trigger condition before automatically triggering. Normal—The instrument waits indefinitely for any occurrence of trigger condition.
Acquisition delay	Decides whether the instrument waits for a certain period of time after a trigger is detected before it starts sampling. Enable Acquisition delay when there is a delay between when the trigger occurs and when the desired data is generated, or when you need a high sampling rate for the desired acquisition window.

Setting	Description
Position	The time between the trigger position and the middle of the display pane. The value of Position changes when you move the trigger horizontally.
Туре	Type of the trigger. When you select Digital , the instrument is triggered when the trigger signals meet all level triggering conditions you define, and meet at least one of the edge triggering conditions. If you do not set any edge triggering condition, the trigger signals only need to meet all level triggering conditions to activate a trigger.
Line	Trigger signal.
Name	Name of the trigger signal.
State	Triggering condition.

For example, if you configure a trigger as the following table shows, the Logic Analyzer will be triggered off when DIO0 is high, DIO1 is low, and DIO2 is rising or DIO3 is falling, as the screenshot illustrates.

Setting	Value
Type DIO0	Digital
DIO0	1
DIO1	0
DIO2	Rising
DIO3	Falling

Horizontal & Acquisition Settings (Logic)

You can configure the data display using the **Horizontal & Acquisition** settings.

Setting	Description
Time per division	The horizontal scale of the display.
Expand	Expands the trace by decreasing Time/div .
Shrink 🗸	Contracts the trace by increasing Time/div .

Logic Analyzer Settings (Logic)

You can use the **Logic Analyzer Settings** window to configure the Logic Analyzer on the NI ELVIS III.

- Line Settings
- <u>Bus Settings</u>

Line Settings (Logic Analyzer)

You can use the **Lines** tab to add, remove, and configure digital lines for the Logic Analyzer. Access the **Lines** tab by clicking the **constant** icon in the **Logic Analyzer** section and selecting **Lines**.

Setting	Description
Status	Enables or disables signal acquisition on the digital line.
Name	Name of the digital line.
Pin number	Displays the pin number of the digital line you have added.

Bus Settings (Logic Analyzer)

You can use the **Buses** tab to add, remove, and configure buses for the Logic Analyzer. Access the **Buses** tab by clicking the sicon in the **Logic Analyzer** section and selecting **Buses**.

The following configuration options are available when **Mode** is **Custom**. The **Custom** mode allows you to analyze a customized set of data lines.

Setting	Description	
Status	Enables or disables signal acquisition on the bus lines.	
Name	Bus name.	
Mode	Bus mode.	
Bus lines	Data lines.	
Clock	Clock line. When you select None , the Logic Analyzer samples the data line only when the data value changes. Selecting a data line for Clock or Enable adds that line to the display, but the setting does not affect the signal acquisition in any way.	
Enable	Optional enable line. Selecting a data line for Clock or Enable adds that line to the display, but the setting does not affect the signal acquisition in any way.	

Setting	Description
Clock active	Sampling edge of the clock line. The Logic Analyzer samples the data line when the clock line is on the edge you specify in Clock active .
Enable active	Polarity of the enable line. The Logic Analyzer samples the data line only when the enable line meets the condition you specify in Enable active .
Endianness	Determines the bit order during data interpretation.

The following configuration options are available when **Mode** is **I2C**:

Setting	Description	
Status	Enables or disables signal acquisition on the bus lines.	
Name	Bus name.	
Mode	Bus mode.	
Format	Display format of the interpreted data.	
Clock (SCL)	Clock signal.	
Data (SDA)	Data signal.	

The following configuration options are available when **Mode** is **SPI**:

Setting	Description	
Status	Enables or disables signal acquisition on the bus lines.	
Name	Bus name.	
Mode	Bus mode.	
Format	Display format of the interpreted data.	
MOSI	Master output, slave input line.	
MISO	Master input, slave output line.	
SCLK	Serial clock line.	
SS	Slave select line.	
Bits per transfer	Number of bits in one transmission word.	

Setting	Description
Bit order	Determines the bit order during data interpretation.
Clock polarity (CPOL)	Determines the idle state of the clock line.
Clock phase(CPHA)	Determines whether the data line is sampled on the leading or tailing edge of the clock line.
SS active	Determines whether the data is sampled when the SS line is high or low.

The following configuration options are available when Mode is UART:

Setting	Description
Status	Enables or disables signal acquisition on the bus lines.
Name	Bus name.
Mode	Bus mode.
Format	Display format of the interpreted data.
Data	Data line.
Bits per transfer	Number of bits in one transmission word.
Polarity	Determines whether to invert the bits that the Logic Analyzer reads from the data line.
Parity	Type of the parity bit. Select None if no parity bit is used.
Baud rate	Sampling rate of the Logic Analyzer.
Stop bits	Number of the stop bits in the data line.

Pattern Generator Settings (Logic)

You can use the **Pattern Generator Settings** window to configure the Pattern Generator on the NI ELVIS III.

- Line Settings
- <u>Bus Settings</u>

Line Settings (Pattern Generator)

You can use the **Lines** tab to add, remove, and configure digital lines for the pattern generator. Access the **Lines** tab by clicking the **can be approximate and selecting Lines**.

The following configuration options are available when **Mode** is **Clock**:

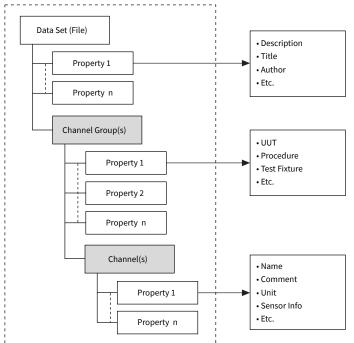
Setting	Description	
Status	Enables or disables signal generation on the digital line.	
Name	Name of the digital line.	
Mode	 Type of the output signal. Clock—The Pattern Generator generates a square wave with the frequency and duty cycle you define. You can use the square wave as clock signals. Custom—The Pattern Generator generates signals defined by the data file that you import. 	
Frequency	Frequency of the output signal.	
Duty cycle	Percentage of the pulse width in the total period of the signal.	

The following configuration options are available when **Mode** is **Custom**:

Setting	Description	
Status	Enables or disables signal generation on the digital line.	
Name	Name of the digital line.	
Mode	 Type of the output signal. Clock—The Pattern Generator generates a square wave with the frequency and duty cycle you define. You can use the square wave as clock signals. 	

Setting	Description
	 Custom—The Pattern Generator generates signals defined by the data file that you import.
Source file	Path to the data file that you import. You can import TDMS files only and the files must contain digital waveform data only. You can load TDMS files generated by LabVIEW or the Logic Analyzer and Pattern Generator in the NI ELVIS III.
Source file channel	Channel you want to import. If Source file contains data of multiple channels, you can use Source file channel to select which channel of data you want to import to the Pattern Generator.
Update rate	Number of samples that the instrument generates per second. Selecting a file in Source file auto-populates Update rate with the update rate defined by the source file. You can change the update rate by entering a new value.

Bus Settings (Pattern Generator)


You can use the **Buses** tab to add, remove, and configure buses for the pattern generator. Access the **Buses** tab by clicking the sicon in the **Pattern Generator** section and selecting **Buses**.

Setting	Description
Status	Enables or disables signal generation on the bus lines.
Name	Name of the bus line.
Mode	Type of the output signal. When Mode is Custom , the Pattern Generator generates the signal defined in the data file(s) you import.
Bus lines	Table containing bus lines that you can add, remove, or define the name for.

Setting	Description	
	Note After you add bus lines to the table, you must click one bus line to enable the corresponding Source file and Source file channel settings.	
Source file	Path to the data file that you import. You can import TDMS files only and the files must contain digital waveform data only. You can load TDMS files generated by LabVIEW or the Logic Analyzer and Pattern Generator in the NI ELVIS III.	
Source file channel	Channel you want to import. If Source file contains data of multiple channels, you can use Source file channel to select which channel of data you want to import to the Pattern Generator.	
Update rate	Number of samples that the instrument generates per second. Selecting the first line in Bus lines and selecting a file in Source file auto-populates Update rate with the update rate defined by the source file. When you select lines except for the first line in Bus lines and select a file in Source file , Update rate does not change. You can change the update rate by entering a new value.	

TDMS File Format (Logic)

You can export the data acquired by the Logic Analyzer to TDMS files. The TDMS file format is supported by the TDM data model. The TDM data model arranges the data in three hierarchical levels: file, channel groups, and channels. The following figure illustrates the TDM data model:

The TDMS files that you export from the SFPs contain some custom properties, for example, **product-name**. For all TDMS files that you generate using the NI ELVIS III instruments, the value of **product-name** is always NI ELVIS III. These TDMS files also have designated names for the channel group and channels.

The TDMS files you export from the Logic Analyzer have the following data structure:

- channel_group: Logic Analyzer
 - channel: Bus 0:CLK
 - channel: Bus 0:MISO
 - channel: Bus 0:MOSI
 - channel: Logic 0
 - channel: Logic 1

• ...

The TDMS files list enabled channels only. The order of the channels in the TDMS files matches the top-to-bottom order of the channels on the configuration panel on the right side of the SFP.

Programming the Logic Analyzer and Pattern Generator

You can use the Logic Analyzer and Pattern Generator VIs installed with the LabVIEW ELVIS III Toolkit to program the Logic Analyzer and Pattern Generator (Logic) instrument on the NI ELVIS III. Find the Logic Analyzer and Pattern Generator VIs on the **Academic I/O** » **Instruments** » **Logic Analyzer and Pattern Generator** subpalette on the Functions palette.

Instruments			B
1 Q Search	🔦 Customize 🔻		
Oscilloscope	Function Generator	DMM	VPS
Logic	Bode	IV Analyzer	

Related information:

Logic Analyzer and Pattern Generator VIs

Logic Analyzer and Pattern Generator Specifications

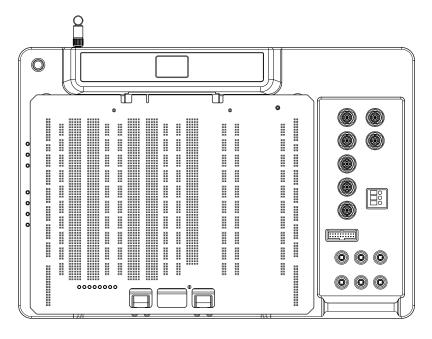
Specifications are **Typical** unless otherwise noted.

	1 ΜΩ
Direction control	Individually programmable as Logic Analyzer or Pattern Generator
Input logic levels	

Maximum	0.8 V	
Input high voltage, V _{IH}		
Minimum	2.0 V	
Maximum	5.25 V	
Output logic levels		
Output low voltage, V _{OL} sinking 4 mA		
Minimum	0 V	
Maximum	0.4 V	
Output high voltage, V _{OH} sourcing 4 mA		
Minimum	2.4 V	
Maximum	3.465 V	
Protection	Short-circuit to ground	

Digital I/O

The Digital I/O instrument acquires and generates digital signals by using the digital input/output on the NI ELVIS III.


Find out more about the Digital I/O instrument in the following topics:

- <u>Connecting Signals to Digital I/O</u>
- Monitoring the Prototyping Board Switch with Digital I/O
- Controlling the LED with Digital I/O
- <u>Configuration Options</u>
- Programming Digital I/O with LabVIEW
- Digital I/O Specifications

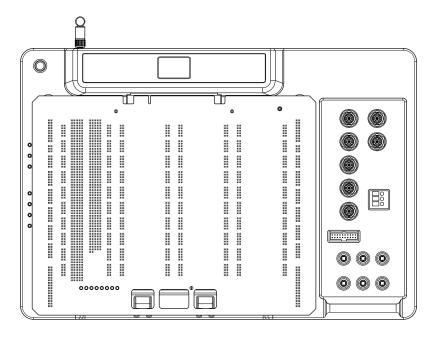
Monitoring the Prototyping Board Switch with Digital I/O

This example illustrates how to use the Digital I/O to monitor the switch.

- 1. Install the NI ELVIS III prototyping board onto the NI ELVIS III workstation.
- 2. Connect a jumper wire between Bank A, Channel DIO 0 (A/DIO 0) and SW0 A, and between DGND and SW0 B, as shown in the following diagram:

Refer to <u>Connecting Signals to Digital I/O</u> for more details about connecting to the digital input/output.

3. Press the application board power button on the workstation to power on the application board.


Caution To ensure safety, you must connect the wires before powering on the application board.

- 4. Launch the Digital I/O Soft Front Panel (SFP).
- 5. Configure A/DIO7:0 to the Read mode.
- 6. Click **Run** to start reading data from the SW0 A switch.
- Turn on/off the SW0 A switch on the workstation. The readback value of A/DIO 0 is 1 when you turn on the switch and 0 when you turn off the switch.

Controlling the LED with Digital I/O

This example illustrates how to use the Digital I/O to control the LED.

- 1. Install the NI ELVIS III prototyping board onto the NI ELVIS III workstation.
- 2. Connect a jumper wire between Bank A, Channel DIO 0 (A/DIO 0) and LED 0, as shown in the following diagram:

Refer to <u>Connecting Signals to Digital I/O</u> for more details about connecting to the digital input/output.

3. Press the application board power button on the workstation to power on the application board.

Caution To ensure safety, you must connect the wires before powering on the application board.

- 4. Launch the Digital I/O Soft Front Panel (SFP).
- 5. Configure the A/DIO7:0 to the Write mode.
- 6. Click **Run** to start writing data from A/DIO 0 to LED 0.
- 7. Change the output status of A/DIO 0 by changing **Value** or **Line status**. The LED is on when you configure A/DIO 0 to 1 and off when you configure A/DIO 0 to 0.

Configuration Options (Digital I/O)

Use configuration options on the Digital I/O Soft Front Panel (SFP) to control how to acquire and generate digital signals. For example, you can configure it to work as a 8-bit digital counter.

Toolbar Controls

Use toolbar controls to perform common tasks for the Digital I/O. The toolbar is located at the top of the SFP.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 👻	Click 📝 to open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking 🔀 and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .

Read Mode

Configure a group of lines to the **Read** mode to read digital data from the lines. You can view the readback value in real time and change the format of the value.

Setting	Description
Readback value	Displays the real-time readback value for the group of lines.
Format	Configures the format of the readback value. You can choose from the following four formats:

Setting	Description
	 Binary
	 Octal
	 Decimal
	 Hexadecimal

Note A line is an individual signal. It refers to a physical terminal. The data that the line carries are called bits, or binary values, which are either 0 (low) or 1 (high).

Write Mode

Configure a group of lines to the **Write** mode to write digital data to the lines. You can configure the value of the lines using **Value** or **Line status**.

Setting	Description
Value	Configures the value for the group of lines. You can choose the format from the drop-down list by clicking the radix box on the left side.
Line status	Toggles the bit of each line. Click the toggle to change a bit from 0 to 1 or from 1 to 0.

Pattern (Auto) Mode

Configure a group of lines to the **Pattern (Auto)** mode to write digital data to the lines at a fixed rate and in a desired pattern mode. You cannot change the configuration options when the SFP is running.

Setting	Description
Readback value	Displays the real-time readback value for the group of lines.
Value	Value written to the lines when the SFP runs. You can enter a value in binary, decimal, or hex format. Choose the format from the drop-down list by clicking the radix box on the left side.

Setting	Description
Mode	 Shift—Moves all the bits to the left or right by one and places 0 in the vacated bit on either end at the configured update rate.
	 Rotate—Moves all the bits to the left by one and moves the first bit to the final position, or performs the opposite operation, at the configured update rate.
	 Count—Increases/decreases all the bits by one at the configured update rate.
	 Invert—Flips the value of all the bits to the opposite at the configured update rate.
	To learn more about the different modes, refer to the pattern mode examples at the end of the this topic.
Update rate	Frequency of updating the value to the lines. The valid value must be an integer ranging from 1 Hz to 10 Hz.

Pattern (Manual) Mode

Configure a group of lines to the **Pattern (Manual)** mode to write digital data to the lines in a desired pattern mode. You can change the value and mode manually when the SFP is running.

Setting	Description
Readback value	Displays the readback value for the group of lines.
Value	Value written to the lines when the SFP runs. You can enter a value in binary, decimal, or hex format. Choose the format from the drop-down list by clicking the radix box on the left side.
Shift	Moves all the bits to the left or right by one and places 0 in the vacated bit on either end.

Setting	Description
Rotate	Moves all the bits to the left by one and moves the first bit to the final position or performs the opposite operation.
Count	Increases/decreases all the bits by one.
Invert	Flips the value of all the bits to the opposite.

Note To learn more about the different modes, refer to the following pattern mode examples.

Pattern Mode Examples

The following examples demonstrate how each pattern mode works.

Mode	Example
Initial value (in binary)	0 0 1 1 0 1 0 1 Bit 7 6 5 4 3 2 1 0
Shift left	0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 Bit 7 6 5 4 3 2 1 0
Shift right	0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 Bit 7 6 5 4 3 2 1 0
Rotate left	0 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 Bit 7 6 5 4 3 2 1 0
Rotate right	0 0 1 1 0 1 0 1 1 0 0 1 1 0 1 0 Bit 7 6 5 4 3 2 1 0

Mode	Ex	am	ple	ē						
Count up		0	0	1	1	0	1	0	1	
						+1				
		0	0	1	1	0	1	1	0	
	Bit	7	6	5	4	3	2	1	0	
Count down		0	0	1	1	0	1	0	1	
						-1 /				
		0	0	1	1	0	1	0	0	
	Bit	7	6	5	4	3	2	1	0	
Invert		0	0	1	1	0	1	0	1	
						,				
		1	1	0	0	1	0	1	0	
	Bit	7	6	5	4	3	2	1	0	

Data Logger

The Data Logger acquires, records, and stores analog signals by using the analog input on the NI ELVIS III.

Find out more about the Data Logger in the following topics:

- <u>Connecting Signals to Analog Input</u>
- Logging a Data Set
- <u>Configuration Options</u>
- TDMS File Format
- Programming Analog Input with LabVIEW
- Analog Input Specifications

Related reference:

<u>Choosing the Instruments</u>

Logging a Data Set

This example illustrates how to use the Data Generator (Data Gen) to generate a data set and use the Data Logger to log the data.

1. Install the NI ELVIS III prototyping board onto the NI ELVIS III workstation.

- 2. Connect a jumper wire between Bank A, Channel AI0 (A/AI0) and A/AO0, and between A/AI1 and A/AO1. Refer to <u>Connecting Signals to Analog Input</u> for more details about connecting to the analog input.
- 3. Press the application board power button on the workstation to power on the application board.

Caution To ensure safety, you must connect the wires before powering on the application board.

- 4. Launch the Data Gen Soft Front Panel (SFP).
- 5. Configure the Data Gen to generate data on A/AO0 and A/AO1.
- 6. Click **Run** to start generating data.
- 7. Launch the Data Logger SFP.
- 8. Configure the Data Logger to log the input signal on A/AI0 and A/AI1.
- 9. Click **Run** to start logging the input signal. A waveform appears in the display window.
- 10. Adjust the display and trigger settings as needed.

Note You must stop the instrument before adjusting the trigger settings.

The Data Logger automatically saves a data file to your local computer when the logging stops.

Configuration Options (Data Logger)

Use configuration options on the Data Logger Soft Front Panel (SFP) to control how to log analog signals to a file. For example, you can choose to log large amount of data to a USB drive.

- <u>Toolbar Controls</u>
- <u>Channels Settings</u>
- Acquisition Setting
- <u>Trigger Settings</u>
- Log Settings

<u>Display Window</u>

Note Click the expand arrow near the upper right corner of the SFP to expand the configuration pane if it is collapsed by default.

Toolbar Controls (Data Logger)

Use the toolbar controls to perform common tasks for the Data Logger. The toolbar is located at the top of the SFP.

Control	Description
Drag and drop	Drags and drops the SFP to the desired position within the browser window. Large SFPs such as the Oscilloscope are always located to the left of small SFPs such as the Variable Power Supplies (VPS). Your window size decides whether the SFPs are arranged vertically or horizontally.
Dropdown 🚽	Click do open the current SFP in a separate browser window. To restore it to the original window, close the SFP by clicking and launch it again.
Run/Stop	Click Run to start data acquisition or generation. Click Stop to stop data acquisition or generation.
Collaboration	Indicates whether you are controlling or viewing the instrument, and whether others are using the instrument simultaneously. Click the button to request or release your control over the instrument. For more information, refer to <u>Collaborating with Your Team Members</u> .
Collapse/Expand 🔯>	Collapses or expands the configuration pane on the right side of the panel.

Channels Settings (Data Logger)

You can use the channels settings to add, remove, and configure analog input channels for the Data Logger.

Setting	Description
Add/Remove	Add a channel by selecting the checkbox beside the channel. Remove a channel by clearing the checkbox. Once you add a channel, the Data Logger automatically logs the data to the channel and saves the data to your local computer.
Status 📕	Shows/Hides the channel's trace on the graph. The control also decides whether Measurements Live exports the data on this channel when you click the Export Data button on the top right side of Measurements Live.
Range	Voltage input range for the channel. Refer to the <u>Gain Selector</u> for more information about input range.
Vertical position	Vertical positioning of the waveform on the graph. Use Vertical position to move the waveform up and down the graph. The Data Logger does not apply Vertical position to the input signal and this setting does not affect the logged data. The range of Vertical position is -10 V to 10 V.
Channel name	Name of the analog input channel. The channel name in the logged data file matches the name you specify for Channel name .

Acquisition Setting (Data Logger)

You can configure the data acquisition by using the **Acquisition** setting.

Sample rate specifies the number of samples acquired from the input signal per second. The unit is samples per second (S/s). The maximum sample rate per channel is 100 kS/s divided by the number of open channels. For example, when only one channel is open, the valid sample rate for this channel is between 200 mS/s and 100 kS/s. When four channels are open, the valid sample rate per channel is between 200 mS/s.

Trigger Settings (Data Logger)

You can configure the start and stop triggers by using the trigger settings. Once a trigger occurs, the Data Logger starts or stops logging data for all open channels.

Start on

The Data Logger offers the following types of start trigger.

Trigger Type	Description
Immediate	Starts logging immediately after you click Run .
Delay	Starts logging after the period of time, in seconds, that you specify.
Rises above value	Starts logging when the input signal rises above the specified value. The range for Value equals the input range you specified for the corresponding channel.
Falls below value	Starts logging when the input signal falls below the specified value. The range for Value equals the input range you specified for the corresponding channel.
Enters range	Starts logging when the input signal falls within the specified range. The valid range equals the input range you specified for the corresponding channel.
Leaves range	Starts logging when the input signal falls outside the specified range. The valid range equals the input range you specified for the corresponding channel.

Stop on

The Data Logger stops logging when one of the following three conditions are met:

• You click Stop.

• A buffer overflow occurs, that is, the aggregate number of logged samples exceeds the buffer size. The buffer size is 3,000,000 on the computer and 2,000,000 on mobile devices. If you choose to log data to a USB drive, the buffer size depends on the size of your USB storage.

• A stop trigger occurs.

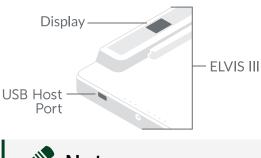
The Data Logger offers the following types of stop trigger.

Trigger Type	Description
No trigger	Stops logging only when you click Stop or a buffer overflow occurs.
Duration	Stops logging after the period of time, in seconds, that you specify. Maximum Duration $= \frac{Buffer Size}{Number of Open Channels \times Sample Rate}$ Maximum Duration $= \frac{Buffer Size}{Number of Open Channels \times Sample Rate}$
Rises above value	Stops logging when the input signal rises above the specified value. The range for Value equals the input range you specified for the corresponding channel.
Falls below value	Stops logging when the input signal falls below the specified value. The range for Value equals the input range you specified for the corresponding channel.
Enters range	Stops logging when the input signal falls within the specified range. The valid range equals the input range you specified for the corresponding channel.
Leaves range	Stops logging when the input signal falls outside the specified range. The valid range equals the input range you specified for the corresponding channel.
Number of samples	Stops logging when the number of logged samples per channel exceeds the value you specify. The maximum value for Number of samples equals the buffer size divided by the number of open channels.

Log Settings (Data Logger)

You can save the logged file to your local computer or a USB drive plugged in the NI ELVIS III by using the log settings.

Setting	Description
File format	File format of the logged file. You can save the logged file in the CSV or TDMS format.
File location	Location where you want to save your logged file. You can save the logged file to your local computer or the USB storage you plugged in the NI ELVIS III.
Filename	Name of the logged file. A timestamp (YYYYMDD_HHMMSS) is appended to the filename you entered. A valid filename can be up to 200 characters long and can contain only letters, numbers, and the following special characters: underscore (_), hyphen (-), and period (.). This option is available only if you select USB storage plugged in ELVIS III as the file location.


Note

• When you select the local computer as the file location, the Data Logger saves the data file to your local computer when the logging stops.

• When you select USB storage as the file location, the Data Logger creates a file in the USB when the logging starts and continuously saves data to that file until the logging stops.

Plugging a USB in the

If you want to save your logged file to a USB drive, plug the USB flash drive in the NI ELVIS III USB host port. The following figure shows the NI ELVIS III with the USB host port highlighted.

N wi

Note The NI ELVIS III USB host port supports USB flash drives formatted with the FAT32 file system.

Display Window (Data Logger)

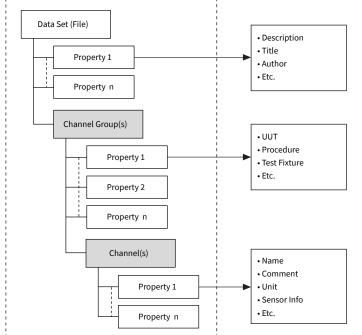
The Data Logger displays the acquired signals on the left side of the panel.

Use **Cursors** to measure a given point on the signal trace, or compare the differences between two points. You can select one of the three modes for a cursor:

Cursor Mode	Description
Off	Turns off the cursors.
Track	Cursor positions are restricted to the acquired data points on a trace.
Manual	Cursors positions are not restricted to the acquired data points on a trace.

When **Cursors** is set to **Manual** or **Track**, a table appears above the display with the following data:

Column	Description
C1	Displays the time and voltage readings for Cursor 1.
C2	Displays the time and voltage readings for Cursor 2.
∆ Value	Displays the absolute time and voltage differences between Cursor 1 and Cursor 2.


The Data Logger's logging status shows in the upper right corner of the graph. The Data Logger has the following logging statuses:

• Waiting—The instrument is waiting for trigger.

- Logging—The instrument is logging data.
- Stopped—The instrument is stopped. This occurs when you click Stop
- **Completed**—The instrument completes logging data. This occurs when a stop trigger or a buffer overflow occurs.

TDMS File Format (Data Logger)

You can export the data acquired by the Data Logger to TDMS files. The TDMS file format is supported by the TDM data model. The TDM data model arranges the data in three hierarchical levels: file, channel groups, and channels. The following figure illustrates the TDM data model:

The TDMS files that you export from the SFPs contain some custom properties, for example, **product-name**. For all TDMS files that you generate using the NI ELVIS III instruments, the value of **product-name** is always NI ELVIS III. These TDMS files also have designated names for the channel group and channels.

The TDMS files you export from the Data Logger have the following data structure: **channel_group**: Data Logger

- channel_group: Data Logger
 - channel: Bank A: AI0
 - channel: Bank A: AI0 AI4

- channel: Bank B: AI0
- channel: Bank B: AI0 AI4
- ...

The TDMS files list enabled channels only. The order of the channels in the TDMS files matches the top-to-bottom order of the channels on the configuration panel on the right side of the SFP.

The channel name in the TDMS files matches the name you specified for each channel.

Collaborating with Your Team Members

The NI ELVIS III enables you to work in groups on a shared device.

When multiple users are using different instruments on a shared device, they have control over their respective instruments. When multiple users are using the same instrument on a shared device, only one user can control the instrument. Others can only view the controller's operation and the acquired or generated signals on the Soft Front Panel (SFP). You can easily request or release control over the instrument.

Before collaborating with your team members, read through the following sections to find answers to commonly raised questions.

Why Can't I Run the Instrument?

One possible reason is that you are in the view mode. In that case, request control to run the instrument. You may also fail to run the instrument because of incorrect settings.

Why Can't I Change My SFP Settings?

In the view mode, the hardware settings of the device are dimmed. Only the controller can change the hardware settings, for example, running the Oscilloscope or configuring its trigger. Viewers can only change certain display settings, for example, configuring the cursors on the Oscilloscope display. Request control to change the hardware settings.

How Do I Know If I Am a Controller or a Viewer?

You can find out whether you are a controller or a viewer through the icon on the top right side of the SFP.

- Only you are using the instrument and you are a controller.
- Conly you are using the instrument and you are a viewer.
- Multiple users are using the instrument and you are a controller.
- Multiple users are using the instrument and you are a viewer.

How Do I Request Control?

Perform the following steps to request control:

- 1. Click the 🔊 icon on the top right side of the SFP you are viewing.
- 2. Click Request Control.
- 3. Wait until the controller approves the request. The controller can decide whether to approve or deny the request. When multiple viewers are requesting control, the controller can choose whom to assign the control to. By default, the first requestor becomes the controller if the current controller does not respond within 30 seconds.

Why Did I Lose Control over the Instrument?

Whenever you close the SFP, you lose control over that instrument. Another possible reason is poor network connection.

Where Can I Find All the Users Connecting to the Shared Device?

When you connect to a shared device successfully, you can see the names of all the users connecting to this device by clicking the arrow next to the \boxed{Manage} icon in the **Manage device connection** tab. You can also find all the users who are using the same SFP by clicking that icon on the top right side of the SFP.

How Do I Give Control to Others?

You can give control to your team member in the following two ways:

- Release control. Your team member requests control and becomes a controller immediately.
- Your team member requests control and you approve the request.